Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30549, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726135

RESUMO

This research introduces an innovative framework for addressing the escalating issue of greenhouse gas emissions through the integration of game theory with differential equations, proposing a novel model to simulate the regulatory dynamics between emission sources and legislative actions. By blending advanced mathematical modeling with environmental science, this paper underscores the critical necessity for pioneering, proactive strategies in environmental management and policy formulation. Central to our approach is the simulation of interactions within a game-theoretic context, aiming to delineate optimal strategies for emission sources and regulatory bodies, factoring in legislative constraints and environmental ramifications. The methodology employs a system of ordinary differential equations, capturing the dynamic, non-stationary nature of atmospheric processes and offering a realistic portrayal of the challenges in mitigating greenhouse gas emissions. Furthermore, the study introduces a fee-based regulatory mechanism designed to encourage emission reductions, highlighting the economic implications of such strategies. Significantly contributing to environmental management, this research presents a detailed model capable of predicting the trajectory of greenhouse gas emissions over a decade, considering the potential impact of technological innovations in emission control. The conclusion emphasizes the promising role of artificial intelligence in refining environmental governance, acknowledging the complexities and limitations inherent in predictive modeling. Aimed at policymakers and environmental scientists, this paper serves as a strategic tool for informed decision-making, advocating for a multidisciplinary approach to develop sustainable, effective solutions to combat one of the most critical environmental challenges facing the globe today.

2.
J Health Pollut ; 11(31): 210910, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34434602

RESUMO

BACKGROUND: Ash and slag disposal areas of Ukrainian thermal power plants accumulate large amounts of waste annually. OBJECTIVES: The aim of the present study was to analyze the composition of ash and slag wastes generated during combustion of coal at Ukrainian thermal power plants and the potential affects of disposal areas on the environment. METHODS: A literature search was conducted using the Google search engine to access online academic publications indexed in Google Scholar, PubMed, Scopus, Clarivate Analytics (Web of Science), ScienceDirect, ResearchGate and Springer Link from 2011 in English and Ukrainian. RESULTS: After analyzing the 25 academic articles included in the present review, the results indicated that hazardous constituents (oxides of silicon, aluminium, iron, calcium and magnesium) of ash can migrate from the ash dump surface by air and water to contaminate the atmosphere, soil, groundwater and surface water in areas located within a few kilometers from the waste site. CONCLUSIONS: By-products of the fuel and energy complex of Ukraine are potentially dangerous sources of environmental pollution. They create risks to the health of the population living in the surrounding territories. Further studies should focus on the features of pollutant transfer from ash dumps, and development of appropriate mathematical models of the pollutant migration to assess pollution levels in soil, groundwater and air. COMPETING INTERESTS: The authors declare no competing financial interests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...