Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Leukemia ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937548

RESUMO

Germline heterozygous mutations in DDX41 predispose individuals to hematologic malignancies in adulthood. Most of these DDX41 mutations result in a truncated protein, leading to loss of protein function. To investigate the impact of these mutations on hematopoiesis, we generated mice with hematopoietic-specific knockout of one Ddx41 allele. Under normal steady-state conditions, there was minimal effect on lifelong hematopoiesis, resulting in a mild yet persistent reduction in red blood cell counts. However, stress induced by transplantation of the Ddx41+/- BM resulted in hematopoietic stem/progenitor cell (HSPC) defects and onset of hematopoietic failure upon aging. Transcriptomic analysis of HSPC subsets from the transplanted BM revealed activation of cellular stress responses, including upregulation of p53 target genes in erythroid progenitors. To understand how the loss of p53 affects the phenotype of Ddx41+/- HSPCs, we generated mice with combined Ddx41 and Trp53 heterozygous deletions. The reduction in p53 expression rescued the fitness defects in HSPC caused by Ddx41 heterozygosity. However, the combined Ddx41 and Trp53 mutant mice were prone to developing hematologic malignancies that resemble human myelodysplastic syndrome and acute myeloid leukemia. In conclusion, DDX41 heterozygosity causes dysregulation of the response to hematopoietic stress, which increases the risk of transformation with a p53 mutation.

2.
iScience ; 27(6): 109809, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38784013

RESUMO

Dysregulated innate immune signaling is linked to preleukemic conditions and myeloid malignancies. However, it is unknown whether sustained innate immune signaling contributes to malignant transformation. Here we show that cell-intrinsic innate immune signaling driven by miR-146a deletion (miR-146aKO), a commonly deleted gene in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), cooperates with mutant RUNX1 (RUNX1mut) to initially induce marrow failure and features of MDS. However, miR-146aKO hematopoietic stem and/or progenitor cells (HSPCs) expressing RUNX1mut eventually progress to a fatal AML. miR-146aKO HSPCs exhaust during serial transplantation, while expression of RUNX1mut restored their hematopoietic cell function. Thus, HSPCs exhibiting dysregulated innate immune signaling require a second hit to develop AML. Inhibiting the dysregulated innate immune pathways with a TRAF6-UBE2N inhibitor suppressed leukemic miR-146aKO/RUNX1mut HSPCs, highlighting the necessity of TRAF6-dependent cell-intrinsic innate immune signaling in initiating and maintaining AML. These findings underscore the critical role of dysregulated cell-intrinsic innate immune signaling in driving preleukemic cells toward AML progression.

3.
Leukemia ; 38(5): 1032-1045, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609495

RESUMO

TNF receptor associated factor 6 (TRAF6) is an E3 ubiquitin ligase that has been implicated in myeloid malignancies. Although altered TRAF6 expression is observed in human acute myeloid leukemia (AML), its role in the AML pathogenesis remains elusive. In this study, we showed that the loss of TRAF6 in AML cells significantly impairs leukemic function in vitro and in vivo, indicating its functional importance in AML subsets. Loss of TRAF6 induces metabolic alterations, such as changes in glycolysis, TCA cycle, and nucleic acid metabolism as well as impaired mitochondrial membrane potential and respiratory capacity. In leukemic cells, TRAF6 expression shows a positive correlation with the expression of O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT), which catalyzes the addition of O-GlcNAc to target proteins involved in metabolic regulation. The restoration of growth capacity and metabolic activity in leukemic cells with TRAF6 loss, achieved through either forced expression of OGT or pharmacological inhibition of O-GlcNAcase (OGA) that removes O-GlcNAc, indicates the significant role of O-GlcNAc modification in the TRAF6-related cellular and metabolic dynamics. Our findings highlight the oncogenic function of TRAF6 in leukemia and illuminate the novel TRAF6/OGT/O-GlcNAc axis as a potential regulator of metabolic reprogramming in leukemogenesis.


Assuntos
Progressão da Doença , Peptídeos e Proteínas de Sinalização Intracelular , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Animais , Camundongos , Fator 6 Associado a Receptor de TNF/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Glicólise , Linhagem Celular Tumoral , Reprogramação Metabólica
4.
Blood ; 143(23): 2414-2424, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38457657

RESUMO

ABSTRACT: Hyperactivation of the NF-κB cascade propagates oncogenic signaling and proinflammation, which together augments disease burden in myeloproliferative neoplasms (MPNs). Here, we systematically ablate NF-κB signaling effectors to identify core dependencies using a series of primary samples and syngeneic and patient-derived xenograft (PDX) mouse models. Conditional knockout of Rela attenuated Jak2V617F- and MPLW515L-driven onset of polycythemia vera and myelofibrosis disease hallmarks, respectively. In PDXs, RELA knockout diminished leukemic engraftment and bone marrow fibrosis while extending survival. Knockout of upstream effector Myd88 also alleviated disease burden; conversely, perturbation of negative regulator miR-146a microRNA induced earlier lethality and exacerbated disease. Perturbation of NF-κB effectors further skewed the abundance and distribution of hematopoietic multipotent progenitors. Finally, pharmacological targeting of interleukin-1 receptor-associated kinase 4 (IRAK4) with inhibitor CA-4948 suppressed disease burden and inflammatory cytokines specifically in MPN without inducing toxicity in nondiseased models. These findings highlight vulnerabilities in MPN that are exploitable with emerging therapeutic approaches.


Assuntos
Transtornos Mieloproliferativos , NF-kappa B , Transdução de Sinais , Animais , Camundongos , Humanos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/metabolismo , NF-kappa B/metabolismo , Camundongos Knockout , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética
5.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370617

RESUMO

The role of splicing dysregulation in cancer is underscored by splicing factor mutations; however, its impact in the absence of such rare mutations is poorly understood. To reveal complex patient subtypes and putative regulators of pathogenic splicing in Acute Myeloid Leukemia (AML), we developed a new approach called OncoSplice. Among diverse new subtypes, OncoSplice identified a biphasic poor prognosis signature that partially phenocopies U2AF1-mutant splicing, impacting thousands of genes in over 40% of adult and pediatric AML cases. U2AF1-like splicing co-opted a healthy circadian splicing program, was stable over time and induced a leukemia stem cell (LSC) program. Pharmacological inhibition of the implicated U2AF1-like splicing regulator, PRMT5, rescued leukemia mis-splicing and inhibited leukemic cell growth. Genetic deletion of IRAK4, a common target of U2AF1-like and PRMT5 treated cells, blocked leukemia development in xenograft models and induced differentiation. These analyses reveal a new prognostic alternative-splicing mechanism in malignancy, independent of splicing-factor mutations.

6.
Haematologica ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916386

RESUMO

Inhibitors of anti-apoptotic BCL-2 family proteins in combination with chemotherapy and hypomethylating agents (HMAs) are promising therapeutic approaches in acute myeloid leukemia (AML) and high-risk myelodysplastic syndromes (MDS). Alvocidib, a cyclin-dependent kinase 9 (CDK9) inhibitor and indirect transcriptional repressor of the anti-apoptotic factor MCL-1, has previously shown clinical activity in AML. Availability of biomarkers for response to the alvocidib + 5- AZA could also extend the rationale of this treatment concept to high-risk MDS. In this study, we performed a comprehensive in vitro assessment of alvocidib and 5-AZA effects in n=45 high-risk MDS patients. Our data revealed additive cytotoxic effects of the combination treatment. Mutational profiling of MDS samples identified ASXL1 mutations as predictors of response. Further, increased response rates were associated with higher gene-expression of the pro-apoptotic factor NOXA in ASXL1 mutated samples. The higher sensitivity of ASXL1 mutant cells to the combination treatment was confirmed in vivo in ASXL1Y588X transgenic mice. Overall, our study demonstrated augmented activity for the alvocidib + 5-AZA combination in higher-risk MDS and identified ASXL1 mutations as a biomarker of response for potential stratification studies.

7.
Blood Rev ; 62: 101128, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37704469

RESUMO

The guidelines for classification, prognostication, and response assessment of myelodysplastic syndromes/neoplasms (MDS) have all recently been updated. In this report on behalf of the International Consortium for MDS (icMDS) we summarize these developments. We first critically examine the updated World Health Organization (WHO) classification and the International Consensus Classification (ICC) of MDS. We then compare traditional and molecularly based risk MDS risk assessment tools. Lastly, we discuss limitations of criteria in measuring therapeutic benefit and highlight how the International Working Group (IWG) 2018 and 2023 response criteria addressed these deficiencies and are endorsed by the icMDS. We also address the importance of patient centered care by discussing the value of quality-of-life assessment. We hope that the reader of this review will have a better understanding of how to classify MDS, predict clinical outcomes and evaluate therapeutic outcomes.


Assuntos
Síndromes Mielodisplásicas , Neoplasias , Humanos , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/terapia , Medição de Risco , Qualidade de Vida , Prognóstico
8.
Blood Adv ; 7(20): 6120-6129, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37552083

RESUMO

Myelodysplastic neoplasms (MDS) are a collection of hematopoietic disorders with widely variable prognoses and treatment options. Accurate pathologic diagnoses present challenges because of interobserver variability in interpreting morphology and quantifying dysplasia. We compared local clinical site diagnoses with central, adjudicated review from 918 participants enrolled in the ongoing National Heart, Lung, and Blood Institute National MDS Natural History Study, a prospective observational cohort study of participants with suspected MDS or MDS/myeloproliferative neoplasms (MPNs). Locally, 264 (29%) were diagnosed as having MDS, 15 (2%) MDS/MPN overlap, 62 (7%) idiopathic cytopenia of undetermined significance (ICUS), 0 (0%) acute myeloid leukemia (AML) with <30% blasts, and 577 (63%) as other. Approximately one-third of cases were reclassified after central review, with 266 (29%) diagnosed as MDS, 45 (5%) MDS/MPN overlap, 49 (5%) ICUS, 15 (2%) AML with <30%, and 543 (59%) as other. Site miscoding errors accounted for more than half (53%) of the local misdiagnoses, leaving a true misdiagnosis rate of 15% overall, 21% for MDS. Therapies were reported in 37% of patients, including 43% of patients with MDS, 49% of patients with MDS/MPN, and 86% of patients with AML with <30% blasts. Treatment rates were lower (25%) in cases with true discordance in diagnosis compared with those for whom local and central diagnoses agreed (40%), and receipt of inappropriate therapy occurred in 7% of misdiagnosed cases. Discordant diagnoses were frequent, which has implications for the accuracy of study-related and national registries and can lead to inappropriate therapy. This trial was registered at www.clinicaltrials.gov as #NCT05074550.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/terapia , Síndromes Mielodisplásicas/patologia , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/epidemiologia , Transtornos Mieloproliferativos/terapia , Estudos Prospectivos , Sistema de Registros
9.
Leukemia ; 37(8): 1698-1708, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37391485

RESUMO

Many inherited bone marrow failure syndromes (IBMFSs) present a high risk of transformation to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). During transformation of IBMFSs, hematopoietic stem and progenitor cells (HSPCs) with poor fitness gain ectopic, dysregulated self-renewal secondary to somatic mutations via undefined mechanisms. Here, in the context of the prototypical IBMFS Fanconi anemia (FA), we performed multiplexed gene editing of mutational hotspots in MDS-associated genes in human induced pluripotent stem cells (iPSCs) followed by hematopoietic differentiation. We observed aberrant self-renewal and impaired differentiation of HSPCs with enrichment of RUNX1 insertions and deletions (indels), generating a model of IBMFS-associated MDS. We observed that compared to the failure state, FA MDS cells show mutant RUNX1-mediated blunting of the G1/S cell cycle checkpoint that is normally activated in FA in response to DNA damage. RUNX1 indels also lead to activation of innate immune signaling, which stabilizes the homologous recombination (HR) effector BRCA1, and this pathway can be targeted to abrogate viability and restore sensitivity to genotoxins in FA MDS. Together, these studies develop a paradigm for modeling clonal evolution in IBMFSs, provide basic understanding of the pathogenesis of MDS, and uncover a therapeutic target in FA-associated MDS.


Assuntos
Anemia de Fanconi , Células-Tronco Pluripotentes Induzidas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Anemia de Fanconi/terapia , Síndrome Congênita de Insuficiência da Medula Óssea/complicações , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células-Tronco Pluripotentes Induzidas/patologia , Síndromes Mielodisplásicas/patologia , Mutação , Leucemia Mieloide Aguda/patologia
11.
Blood ; 142(11): 989-1007, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37172199

RESUMO

Dysregulation of innate immune signaling is a hallmark of hematologic malignancies. Recent therapeutic efforts to subvert aberrant innate immune signaling in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) have focused on the kinase IRAK4. IRAK4 inhibitors have achieved promising, though moderate, responses in preclinical studies and clinical trials for MDS and AML. The reasons underlying the limited responses to IRAK4 inhibitors remain unknown. In this study, we reveal that inhibiting IRAK4 in leukemic cells elicits functional complementation and compensation by its paralog, IRAK1. Using genetic approaches, we demonstrate that cotargeting IRAK1 and IRAK4 is required to suppress leukemic stem/progenitor cell (LSPC) function and induce differentiation in cell lines and patient-derived cells. Although IRAK1 and IRAK4 are presumed to function primarily downstream of the proximal adapter MyD88, we found that complementary and compensatory IRAK1 and IRAK4 dependencies in MDS/AML occur via noncanonical MyD88-independent pathways. Genomic and proteomic analyses revealed that IRAK1 and IRAK4 preserve the undifferentiated state of MDS/AML LSPCs by coordinating a network of pathways, including ones that converge on the polycomb repressive complex 2 complex and JAK-STAT signaling. To translate these findings, we implemented a structure-based design of a potent and selective dual IRAK1 and IRAK4 inhibitor KME-2780. MDS/AML cell lines and patient-derived samples showed significant suppression of LSPCs in xenograft and in vitro studies when treated with KME-2780 as compared with selective IRAK4 inhibitors. Our results provide a mechanistic basis and rationale for cotargeting IRAK1 and IRAK4 for the treatment of cancers, including MDS/AML.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteômica , Transdução de Sinais , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Leucemia Mieloide Aguda/genética
12.
Blood Adv ; 7(17): 4822-4837, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37205848

RESUMO

Acute myeloid leukemia (AML) is an aggressive blood cancer that stems from the rapid expansion of immature leukemic blasts in the bone marrow. Mutations in epigenetic factors represent the largest category of genetic drivers of AML. The chromatin assembly factor CHAF1B is a master epigenetic regulator of transcription associated with self-renewal and the undifferentiated state of AML blasts. Upregulation of CHAF1B, as observed in almost all AML samples, promotes leukemic progression by repressing the transcription of differentiation factors and tumor suppressors. However, the specific factors regulated by CHAF1B and their contributions to leukemogenesis are unstudied. We analyzed RNA sequencing data from mouse MLL-AF9 leukemic cells and bone marrow aspirates, representing a diverse collection of pediatric AML samples and identified the E3 ubiquitin ligase TRIM13 as a target of CHAF1B-mediated transcriptional repression associated with leukemogenesis. We found that CHAF1B binds the promoter of TRIM13, resulting in its transcriptional repression. In turn, TRIM13 suppresses self-renewal of leukemic cells by promoting pernicious entry into the cell cycle through its nuclear localization and catalytic ubiquitination of cell cycle-promoting protein, CCNA1. Overexpression of TRIM13 initially prompted a proliferative burst in AML cells, which was followed by exhaustion, whereas loss of total TRIM13 or deletion of its catalytic domain enhanced leukemogenesis in AML cell lines and patient-derived xenografts. These data suggest that CHAF1B promotes leukemic development, in part, by repressing TRIM13 expression and that this relationship is necessary for leukemic progression.


Assuntos
Montagem e Desmontagem da Cromatina , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Linhagem Celular , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo
13.
Haematologica ; 108(10): 2715-2729, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102608

RESUMO

Inflammation is associated with the pathogenesis of myelodysplastic syndromes (MDS) and emerging evidence suggests that MDS hematopoietic stem and progenitor cells (HSPC) exhibit an altered response to inflammation. Deletion of chromosome 5 (del(5q)) is the most common chromosomal abnormality in MDS. Although this MDS subtype contains several haploinsufficient genes that impact innate immune signaling, the effects of inflammation on del(5q) MDS HSPC remains undefined. Utilizing a model of del(5q)-like MDS, inhibiting the IRAK1/4-TRAF6 axis improved cytopenias, suggesting that activation of innate immune pathways contributes to certain clinical features underlying the pathogenesis of low-risk MDS. However, low-grade inflammation in the del(5q)-like MDS model did not contribute to more severe disease but instead impaired the del(5q)-like HSPC as indicated by their diminished numbers, premature attrition and increased p53 expression. Del(5q)-like HSPC exposed to inflammation became less quiescent, but without affecting cell viability. Unexpectedly, the reduced cellular quiescence of del(5q) HSPC exposed to inflammation was restored by p53 deletion. These findings uncovered that inflammation confers a competitive advantage of functionally defective del(5q) HSPC upon loss of p53. Since TP53 mutations are enriched in del(5q) AML following an MDS diagnosis, increased p53 activation in del(5q) MDS HSPC due to inflammation may create a selective pressure for genetic inactivation of p53 or expansion of a pre-existing TP53-mutant clone.


Assuntos
Síndromes Mielodisplásicas , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Deleção Cromossômica , Síndromes Mielodisplásicas/patologia , Células-Tronco Hematopoéticas/metabolismo , Transdução de Sinais , Cromossomos Humanos Par 5/genética , Cromossomos Humanos Par 5/metabolismo
14.
Blood Rev ; 60: 101072, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36934059

RESUMO

Biological events that contribute to the pathogenesis of myelodysplastic syndromes/neoplasms (MDS) are becoming increasingly characterized and are being translated into rationally designed therapeutic strategies. Herein, we provide updates from the first International Workshop on MDS (iwMDS) of the International Consortium for MDS (icMDS) detailing recent advances in understanding the genetic landscape of MDS, including germline predisposition, epigenetic and immune dysregulation, the complexities of clonal hematopoiesis progression to MDS, as well as novel animal models of the disease. Connected to this progress is the development of novel therapies targeting specific molecular alterations, the innate immune system, and immune checkpoint inhibitors. While some of these agents have entered clinical trials (e.g., splicing modulators, IRAK1/4 inhibitors, anti-CD47 and anti-TIM3 antibodies, and cellular therapies), none have been approved for MDS. Additional preclinical and clinical work is needed to develop a truly individualized approach to the care of MDS patients.


Assuntos
Síndromes Mielodisplásicas , Neoplasias , Animais , Humanos , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/terapia , Epigenômica , Terapia Baseada em Transplante de Células e Tecidos , Processamento de Proteína Pós-Traducional
17.
Cancer Discov ; 12(10): 2392-2413, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35924979

RESUMO

Clonal hematopoiesis (CH) is an aging-associated condition characterized by the clonal outgrowth of mutated preleukemic cells. Individuals with CH are at an increased risk of developing hematopoietic malignancies. Here, we describe a novel animal model carrying a recurrent TET2 missense mutation frequently found in patients with CH and leukemia. In a fashion similar to CH, animals show signs of disease late in life when they develop a wide range of myeloid neoplasms, including acute myeloid leukemia (AML). Using single-cell transcriptomic profiling of the bone marrow, we show that disease progression in aged animals correlates with an enhanced inflammatory response and the emergence of an aberrant inflammatory monocytic cell population. The gene signature characteristic of this inflammatory population is associated with poor prognosis in patients with AML. Our study illustrates an example of collaboration between a genetic lesion found in CH and inflammation, leading to transformation and the establishment of blood neoplasms. SIGNIFICANCE: Progression from a preleukemic state to transformation, in the presence of TET2 mutations, is coupled with the emergence of inflammation and a novel population of inflammatory monocytes. Genes characteristic of this inflammatory population are associated with the worst prognosis in patients with AML. These studies connect inflammation to progression to leukemia. See related commentary by Pietras and DeGregori, p. 2234 . This article is highlighted in the In This Issue feature, p. 2221.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Animais , Hematopoese/genética , Inflamação/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia
18.
Elife ; 112022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36040792

RESUMO

Background: Mutations in the SF3B1 splicing factor are commonly seen in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), yet the specific oncogenic pathways activated by mis-splicing have not been fully elucidated. Inflammatory immune pathways have been shown to play roles in the pathogenesis of MDS, though the exact mechanisms of their activation in splicing mutant cases are not well understood. Methods: RNA-seq data from SF3B1 mutant samples was analyzed and functional roles of interleukin-1 receptor-associated kinase 4 (IRAK4) isoforms were determined. Efficacy of IRAK4 inhibition was evaluated in preclinical models of MDS/AML. Results: RNA-seq splicing analysis of SF3B1 mutant MDS samples revealed retention of full-length exon 6 of IRAK4, a critical downstream mediator that links the Myddosome to inflammatory NF-kB activation. Exon 6 retention leads to a longer isoform, encoding a protein (IRAK4-long) that contains the entire death domain and kinase domain, leading to maximal activation of NF-kB. Cells with wild-type SF3B1 contain smaller IRAK4 isoforms that are targeted for proteasomal degradation. Expression of IRAK4-long in SF3B1 mutant cells induces TRAF6 activation leading to K63-linked ubiquitination of CDK2, associated with a block in hematopoietic differentiation. Inhibition of IRAK4 with CA-4948, leads to reduction in NF-kB activation, inflammatory cytokine production, enhanced myeloid differentiation in vitro and reduced leukemic growth in xenograft models. Conclusions: SF3B1 mutation leads to expression of a therapeutically targetable, longer, oncogenic IRAK4 isoform in AML/MDS models. Funding: This work was supported by Cincinnati Children's Hospital Research Foundation, Leukemia Lymphoma Society, and National Institute of Health (R35HL135787, RO1HL111103, RO1DK102759, RO1HL114582), Gabrielle's Angel Foundation for Cancer Research, and Edward P. Evans Foundation grants to DTS. AV is supported by Edward P. Evans Foundation, National Institute of Health (R01HL150832, R01HL139487, R01CA275007), Leukemia and Lymphoma Society, Curis and a gift from the Jane and Myles P. Dempsey family. AP and JB are supported by Blood Cancer UK (grants 13042 and 19004). GC is supported by a training grant from NYSTEM. We acknowledge support of this research from The Einstein Training Program in Stem Cell Research from the Empire State Stem Cell Fund through New York State Department of Health Contract C34874GG. MS is supported by a National Institute of Health Research Training and Career Development Grant (F31HL132420).


Genes contain blocks of code that tell cells how to make each part of a protein. Between these blocks are sections of linking DNA, which cells remove when they are preparing to use their genes. Scientists call this process 'splicing'. Cells can splice some genes in more than one way, allowing them to make different proteins from the same genetic code. Mutations that affect the splicing process can change the way cells make their proteins, leading to disease. For example, the myelodysplastic syndromes are a group of blood cancers often caused by mutations in splicing proteins, such as SF3B1. The disorder stops blood cells from maturing and causes abnormal inflammation. So far, the link between splicing, blood cell immaturity, inflammation and cancer is not clear. To find out more, Choudhary, Pellagatti et al. looked at the spliced genetic code from people with myelodysplastic syndromes. Mutations in the splicing protein SF3B1 changed the way cells spliced an important signalling molecule known as IRAK4. Affected cells cut out less genetic code and made a longer version of this signalling protein, named IRAK4-Long. This altered protein activated inflammation and stopped blood cells from maturing. Blocking IRAK4-Long reversed the effects. It also reduced tumour formation in mice carrying affected human cells. The molecule used to block IRAK4, CA-4948 ­ also known as Emavusertib ­ is currently being evaluated in clinical trials for myelodysplastic syndromes and other types of blood cancer. The work of Choudhary, Pellagatti et al. could help scientists to design genetic tests to predict which patients might benefit from this treatment.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Criança , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação , Síndromes Mielodisplásicas/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Isoformas de Proteínas/metabolismo , Splicing de RNA
20.
J Hematol Oncol ; 15(1): 70, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606824

RESUMO

Advanced pancreatic ductal adenocarcinoma (PDAC) is usually an incurable malignancy that needs newer therapeutic targets. Interleukin-1 receptor accessory protein (IL1RAP) is an innate immune mediator that regulates activation of pro-inflammatory and mitogenic signaling pathways. Immunohistochemistry on tissue microarrays demonstrated expression of IL1RAP in majority of human PDAC specimens and in murine pancreatic tumors from K-RasG122D/p53R172H/PDXCre (KPC) mice. Single cell RNA-Seq analysis of human primary pre-neoplastic lesions and adenocarcinoma specimens indicated that overexpression occurs during carcinogenesis. IL1RAP overexpression was associated with worse overall survival. IL1RAP knockdown significantly reduced cell viability, invasiveness, and clonogenic growth in pancreatic cancer cell lines. Inhibition of the downstream interleukin-1 receptor-associated kinase 4 (IRAK4) using two pharmacologic inhibitors, CA-4948 and PF06650833, resulted in reduced growth in pancreatic cancer cell lines and in xenograft models.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Proteína Acessória do Receptor de Interleucina-1 , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Animais , Carcinogênese , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Camundongos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...