Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 411(11): 2383-2394, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30820631

RESUMO

Solid-phase microextraction (SPME) is an alternative method to dialysis and ultrafiltration for the determination of plasma protein binding (PPB) of drugs. It is particularly advantageous for complicated analytes where standard methods are not applicable. Di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) is a lead compound of novel thiosemicarbazone anti-cancer drugs, which entered clinical trials in 2016. However, this agent exhibited non-specific binding on filtration membranes and had intrinsic chelation activity, which precluded standard PPB methods. In this study, using a simple and fast procedure, we prepared novel SPME fibers for extraction of DpC based on a metal-free, silicon string support, covered with C18 sorbent. Reproducibility of the preparation process was demonstrated by the percent relative standard deviation (RSD) of ≤ 9.2% of the amount of DpC extracted from PBS by several independently prepared fibers. The SPME procedure was optimized by evaluating extraction and desorption time profiles. Suitability of the optimized protocol was verified by examining reproducibility, linearity, and recovery of DpC extracted from PBS or plasma. All samples extracted by SPME were analyzed using an optimized and validated UHPLC-MS/MS method. The developed procedure was applied to the in vitro determination of PPB of DpC at two clinically relevant concentrations (500 and 1000 ng/mL). These studies showed that DpC is highly bound to plasma proteins (PPB ≥ 88%) and this did not differ significantly between both concentrations tested. This investigation provides novel data in the applicability of SPME for the determination of PPB of chelators, as well as useful information for the clinical development of DpC. Graphical abstract.


Assuntos
Antineoplásicos/metabolismo , Proteínas Sanguíneas/metabolismo , Piridinas/metabolismo , Microextração em Fase Sólida/instrumentação , Tiossemicarbazonas/metabolismo , Adsorção , Animais , Bovinos , Cromatografia Líquida de Alta Pressão/métodos , Desenho de Equipamento , Ligação Proteica , Ratos , Silício/química , Microextração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos
2.
J Pharmacol Exp Ther ; 364(3): 433-446, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29273587

RESUMO

Dexrazoxane (DEX), the only cardioprotectant approved against anthracycline cardiotoxicity, has been traditionally deemed to be a prodrug of the iron-chelating metabolite ADR-925. However, pharmacokinetic profile of both agents, particularly with respect to the cells and tissues essential for its action (cardiomyocytes/myocardium), remains poorly understood. The aim of this study is to characterize the conversion and disposition of DEX to ADR-925 in vitro (primary cardiomyocytes) and in vivo (rabbits) under conditions where DEX is clearly cardioprotective against anthracycline cardiotoxicity. Our results show that DEX is hydrolyzed to ADR-925 in cell media independently of the presence of cardiomyocytes or their lysate. Furthermore, ADR-925 directly penetrates into the cells with contribution of active transport, and detectable concentrations occur earlier than after DEX incubation. In rabbits, ADR-925 was detected rapidly in plasma after DEX administration to form sustained concentrations thereafter. ADR-925 was not markedly retained in the myocardium, and its relative exposure was 5.7-fold lower than for DEX. Unlike liver tissue, myocardium homogenates did not accelerate the conversion of DEX to ADR-925 in vitro, suggesting that myocardial concentrations in vivo may originate from its distribution from the central compartment. The pharmacokinetic parameters for both DEX and ADR-925 were determined by both noncompartmental analyses and population pharmacokinetics (including joint parent-metabolite model). Importantly, all determined parameters were closer to human than to rodent data. The present results open venues for the direct assessment of the cardioprotective effects of ADR-925 in vitro and in vivo to establish whether DEX is a drug or prodrug.


Assuntos
Cardiotônicos/farmacocinética , Dexrazoxano/farmacocinética , Etilenodiaminas/farmacocinética , Glicina/análogos & derivados , Miócitos Cardíacos/metabolismo , Animais , Cardiotônicos/sangue , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Dexrazoxano/sangue , Dexrazoxano/metabolismo , Dexrazoxano/urina , Etilenodiaminas/metabolismo , Glicina/metabolismo , Glicina/farmacocinética , Coelhos , Ratos , Distribuição Tecidual
3.
Oncotarget ; 6(40): 42411-28, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26623727

RESUMO

Di(2-pyridyl)ketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di(2-pyridyl)ketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) are novel, highly potent and selective anti-tumor and anti-metastatic drugs. Despite their structural similarity, these agents differ in their efficacy and toxicity in-vivo. Considering this, a comparison of their pharmacokinetic and pharmaco/toxico-dynamic properties was conducted to reveal if these factors are involved in their differential activity. Both compounds were administered to Wistar rats intravenously (2 mg/kg) and their metabolism and disposition were studied using UHPLC-MS/MS. The cytotoxicity of both thiosemicarbazones and their metabolites was also examined using MCF-7, HL-60 and HCT116 tumor cells and 3T3 fibroblasts and H9c2 cardiac myoblasts. Their intracellular iron-binding ability was characterized by the Calcein-AM assay and their iron mobilization efficacy was evaluated. In contrast to DpC, Dp44mT undergoes rapid demethylation in-vivo, which may be related to its markedly faster elimination (T1/2 = 1.7 h for Dp44mT vs. 10.7 h for DpC) and lower exposure. Incubation of these compounds with cancer cells or cardiac myoblasts did not result in any significant metabolism in-vitro. The metabolism of Dp44mT in-vivo resulted in decreased anti-cancer activity and toxicity. In conclusion, marked differences in the pharmacology of Dp44mT and DpC were observed and highlight the favorable pharmacokinetics of DpC for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Tiossemicarbazonas/farmacologia , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem , Tiossemicarbazonas/metabolismo , Tiossemicarbazonas/farmacocinética
4.
PLoS One ; 10(10): e0139929, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26460540

RESUMO

Cancer cells have a high iron requirement and many experimental studies, as well as clinical trials, have demonstrated that iron chelators are potential anti-cancer agents. The ligand, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), demonstrates both potent anti-neoplastic and anti-retroviral properties. In this study, Bp4eT and its recently identified amidrazone and semicarbazone metabolites were examined and compared with respect to their anti-proliferative activity towards cancer cells (HL-60 human promyelocytic leukemia, MCF-7 human breast adenocarcinoma, HCT116 human colon carcinoma and A549 human lung adenocarcinoma), non-cancerous cells (H9c2 neonatal rat-derived cardiomyoblasts and 3T3 mouse embryo fibroblasts) and their interaction with intracellular iron pools. Bp4eT was demonstrated to be a highly potent and selective anti-neoplastic agent that induces S phase cell cycle arrest, mitochondrial depolarization and apoptosis in MCF-7 cells. Both semicarbazone and amidrazone metabolites showed at least a 300-fold decrease in cytotoxic activity than Bp4eT towards both cancer and normal cell lines. The metabolites also lost the ability to: (1) promote the redox cycling of iron; (2) bind and mobilize iron from labile intracellular pools; and (3) prevent 59Fe uptake from 59Fe-labeled transferrin by MCF-7 cells. Hence, this study demonstrates that the highly active ligand, Bp4eT, is metabolized to non-toxic and pharmacologically inactive analogs, which most likely contribute to its favorable pharmacological profile. These findings are important for the further development of this drug candidate and contribute to the understanding of the structure-activity relationships of these agents.


Assuntos
Antineoplásicos/farmacologia , Quelantes de Ferro/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Ferro/química , Ferro/metabolismo , Quelantes de Ferro/química , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Semicarbazonas/química , Semicarbazonas/metabolismo , Semicarbazonas/farmacologia , Semicarbazonas/toxicidade , Tiossemicarbazonas/química , Tiossemicarbazonas/metabolismo , Tiossemicarbazonas/toxicidade
5.
J Pharm Biomed Anal ; 105: 55-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527982

RESUMO

Salicylaldehyde isonicotinoyl hydrazone (SIH) is an intracellular iron chelator with well documented potential to protect against oxidative injury both in vitro and in vivo. However, it suffers from short biological half-life caused by fast hydrolysis of the hydrazone bond. Recently, a concept of boronate prochelators has been introduced as a strategy that might overcome these limitations. This study presents two complementary analytical methods for detecting the prochelator-boronyl salicylaldehyde isonicotinoyl hydrazone-BSIH along with its active metal-binding chelator SIH in different solution matrices and concentration ranges. An LC-UV method for determination of BSIH and SIH in buffer and cell culture medium was validated over concentrations of 7-115 and 4-115 µM, respectively, and applied to BSIH activation experiments in vitro. An LC-MS assay was validated for quantification of BSIH and SIH in plasma over the concentration range of 0.06-23 and 0.24-23 µM, respectively, and applied to stability studies in plasma in vitro as well as analysis of plasma taken after i.v. administration of BSIH to rats. A Zorbax-RP bonus column and mobile phases containing either phosphate buffer with EDTA or ammonium formate and methanol/acetonitrile mixture provided suitable conditions for the LC-UV and LC-MS analysis, respectively. Samples were diluted or precipitated with methanol prior to analysis. These separative analytical techniques establish the first validated protocols to investigate BSIH activation by hydrogen peroxide in multiple matrices, directly compare the stabilities of the prochelator and its chelator in plasma, and provide the first basic pharmacokinetic data of this prochelator. Experiments reveal that BSIH is stable in all media tested and is partially converted to SIH by H2O2. The observed integrity of BSIH in plasma samples from the in vivo study suggests that the concept of prochelation might be a promising strategy for further development of aroylhydrazone cytoprotective agents.


Assuntos
Aldeídos/análise , Ácidos Borônicos/análise , Quelantes/análise , Cromatografia Líquida/métodos , Hidrazonas/análise , Ácidos Isonicotínicos/análise , Espectrometria de Massas/métodos , Espectrofotometria Ultravioleta/métodos , Aldeídos/sangue , Animais , Ácidos Borônicos/sangue , Meios de Cultura/química , Estabilidade de Medicamentos , Hidrazonas/sangue , Ácidos Isonicotínicos/sangue , Masculino , Estrutura Molecular , Ratos Wistar , Padrões de Referência , Sensibilidade e Especificidade
6.
Biomed Chromatogr ; 28(5): 621-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24254882

RESUMO

Novel thiosemicarbazone metal chelators are extensively studied anti-cancer agents with marked and selective activity against a wide variety of cancer cells, as well as human tumor xenografts in mice. This study describes the first validated LC-MS/MS method for the simultaneous quantification of 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT) and its main metabolites (E/Z isomers of the semicarbazone structure, M1-E and M1-Z, and the amidrazone metabolite, M2) in plasma. Separation was achieved using a C18 column with ammonium formate/acetonitrile mixture as the mobile phase. Plasma samples were treated using solid-phase extraction on 96-well plates. This method was validated over the concentration range of 0.18-2.80 µM for Bp4eT, 0.02-0.37 µM for both M1-E and M1-Z, and 0.10-1.60 µM for M2. This methodology was applied to the analysis of samples from in vivo experiments, allowing for the concentration-time profile to be simultaneously assessed for the parent drug and its metabolites. The current study addresses the lack of knowledge regarding the quantitative analysis of thiosemicarbazone anti-cancer drugs and their metabolites in plasma and provides the first pharmacokinetic data on a lead compound of this class.


Assuntos
Antineoplásicos/sangue , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Tiossemicarbazonas/sangue , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Masculino , Projetos Piloto , Ratos , Ratos Wistar , Tiossemicarbazonas/metabolismo , Tiossemicarbazonas/farmacocinética
7.
J Pharm Biomed Anal ; 76: 243-51, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23339990

RESUMO

Dexrazoxane (DEX) is the only clinically used drug effective against anthracycline-induced cardiotoxicity and extravasation injury. However, the mechanism of its cardioprotective action still remains elusive. This paucity of comprehensive data is at least partially caused by the analytical difficulties associated with selective and sensitive simultaneous determination of the parent drug and its putative active metabolite ADR-925 in the relevant biological material. The aim of this study was to develop and validate the first LC-MS/MS method for simultaneous determination of DEX and ADR-925 in the isolated rat neonatal ventricular cardiomyocytes (NVCMs) and the cell culture medium. The analysis was performed on a Synergi Polar-RP column using the gradient profile of the mobile phase composed of 2mM ammonium formate and methanol. Electrospray ionization and ion trap mass analyzer were used as ionization and detection techniques, respectively. NVCMs were precipitated with methanol and the cell culture medium samples were diluted with the same solvent prior the LC-MS/MS analysis. The method was validated within the range of 4-80pmol/10(6) NVCMs and 7-70pmol/10(6) NVCMs for DEX and ADR-925, respectively, and at the concentrations of 8-100µM for both compounds in the culture cell medium. The practical applicability of this method was confirmed by the pilot analysis of NVCMs and the corresponding cell medium samples from relevant in vitro experiment. Hence, the LC-MS/MS method developed in this study represents a modern analytical tool suitable for investigation of DEX bioactivation inside the cardiomyocytes. In addition, the basic utility of the method for the analysis of DEX and ADR-925 in plasma samples was proved in a pilot experiment.


Assuntos
Cromatografia Líquida/métodos , Etilenodiaminas/farmacocinética , Glicina/análogos & derivados , Razoxano/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Animais Recém-Nascidos , Fármacos Cardiovasculares/farmacocinética , Células Cultivadas , Glicina/farmacocinética , Miócitos Cardíacos/metabolismo , Projetos Piloto , Coelhos , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray/métodos
8.
Anal Bioanal Chem ; 405(5): 1651-61, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23180090

RESUMO

Di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) is a promising analogue of the dipyridyl thiosemicarbazone class currently under development as a potential anti-cancer drug. In fact, this class of agents shows markedly greater anti-tumor activity and selectivity than the clinically investigated thiosemicarbazone, Triapine®. However, further development of DpC requires detailed data concerning its metabolism. Therefore, we focused on the identification of principal phase I and II metabolites of DpC in vitro. DpC was incubated with human liver microsomes/S9 fractions and the samples were analyzed using ultra-performance liquid chromatography (UPLC(TM)) with electrospray ionization quadrupole-time-of-flight (Q-TOF) mass spectrometry. An Acquity UPLC BEH C(18) column was implemented with 2 mM ammonium acetate and acetonitrile in gradient mode as the mobile phase. The chemical structures of metabolites were proposed based on the accurate mass measurement of the protonated molecules as well as their main product ions. Ten phase I and two phase II metabolites were detected and structurally described. The metabolism of DpC occurred via oxidation of the thiocarbonyl group, hydroxylation and N-demethylation, as well as the combination of these reactions. Conjugates of DpC and the metabolite, M10, with glucuronic acid were also observed as phase II metabolites. Neither sulfate nor glutathione conjugates were detected. This study provides the first information about the chemical structure of the principal metabolites of DpC, which supports the development of this promising anti-cancer drug and provides vital data for further pharmacokinetic and in vivo metabolism studies.


Assuntos
Antineoplásicos/química , Antineoplásicos/metabolismo , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em Tandem/métodos , Tiossemicarbazonas/química , Tiossemicarbazonas/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Humanos
9.
Anal Bioanal Chem ; 403(1): 309-21, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22349326

RESUMO

The iron chelator, 2-benzoylpyridine-4-ethyl-3-thiosemicarbazone (Bp4eT), was identified as a lead compound of the 2-benzoylpyridine thiosemicarbazone series, which were designed as potential anti-cancer agents. This ligand has been shown to possess potent anti-proliferative activity with a highly selective mechanism of action. However, further progress in the development of this compound requires data regarding its metabolism in mammals. The aim of this study was to identify the main in vitro and in vivo phase I metabolites of Bp4eT using liquid chromatography tandem mass spectrometry (LC-MS/MS). Two metabolites were detected after incubation of this drug with rat and human liver microsomal fractions. Based on LC-MS(n) analysis, the metabolites were demonstrated to be 2-benzoylpyridine-4-ethyl-3-semicarbazone and N (3)-ethyl-N (1)-[phenyl(pyridin-2-yl)methylene]formamidrazone, with both resulting from the oxidation of the thiocarbonyl group. The identity of these metabolites was further shown by LC-MS/MS analysis of these latter compounds which were prepared by oxidation of Bp4eT with hydrogen peroxide and their structures confirmed by nuclear magnetic resonance and infrared spectra. Both the semicarbazone and the amidrazone metabolites were detected in plasma, urine, and feces after i.v. administration of Bp4eT to rats. In addition, another metabolite that could correspond to hydroxylated amidrazone was found in vivo. Thus, oxidative pathways play a major role in the phase I metabolism of this promising anti-tumor agent. The outcomes of this study will be further utilized for: (1) the development and validation of the analytical method for the quantification of Bp4eT and its metabolites in biological materials; (2) to design pharmacokinetic experiments; and to (3) evaluate the potential contribution of the individual metabolites to the pharmacodynamics/toxico-dynamics of this novel anti-proliferative agent.


Assuntos
Antineoplásicos/metabolismo , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Tiossemicarbazonas/metabolismo , Animais , Humanos , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Masculino , Ratos , Extração em Fase Sólida , Espectrofotometria Infravermelho
10.
J Sep Sci ; 34(12): 1357-65, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21567949

RESUMO

The ability of different stationary phases developed for the analysis of polar compounds (ZIC-HILIC, ZIC-pHILIC and Zorbax SB-Aq) to separate isoniazid, its metabolites (acetylisonazid, pyridoxal isonicotinoyl hydrazone, pyridoxal isonicotinoyl hydrazone 5-phosphate), pyridoxine, pyridoxal and pyridoxal 5-phosphate under MS compatible conditions was systematically investigated using HPLC-UV. The mobile phase strength, pH and buffer concentration were modified to assess their impact on the retention of these compounds. The best available separation of the compounds was achieved using 1 mM ammonium formate (pH≈6) and ACN (20:80, v/v) on ZIC-HILIC and employing 5 mM ammonium formate (pH 3.0) and ACN (40:60, v/v) on ZIC-pHILIC. A gradient profile using 0.5 mM ammonium formate (pH≈6) and MeOH (0-12 min: 10% MeOH, 12-15 min: 10-50% MeOH, 15-35 min: 50% MeOH, 35.0-35.2 min: 50-10% MeOH, 35.2-45.0 min: 10% MeOH) provided the best separation of the compounds on Zorbax SB-Aq. Subsequent LC-MS analysis demonstrated that ZIC-HILIC is useful for the analysis of pyridoxine, pyridoxal and pyridoxal isonicotinoyl hydrazone. However, the chromatographic conditions developed for the analysis of the compounds on Zorbax SB-Aq are capable of achieving the best separation of all compounds in this study with the higher sensitivity for most of the analytes.


Assuntos
Antituberculosos/análise , Cromatografia Líquida de Alta Pressão/métodos , Isoniazida/análise , Vitamina B 6/análise , Antituberculosos/metabolismo , Cromatografia Líquida de Alta Pressão/instrumentação , Isoniazida/metabolismo
11.
Chem Res Toxicol ; 24(3): 290-302, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21214215

RESUMO

Oxidative stress is known to contribute to a number of cardiovascular pathologies. Free intracellular iron ions participate in the Fenton reaction and therefore substantially contribute to the formation of highly toxic hydroxyl radicals and cellular injury. Earlier work on the intracellular iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH) has demonstrated its considerable promise as an agent to protect the heart against oxidative injury both in vitro and in vivo. However, the major limitation of SIH is represented by its labile hydrazone bond that makes it prone to plasma hydrolysis. Hence, in order to improve the hydrazone bond stability, nine compounds were prepared by a substitution of salicylaldehyde by the respective methyl- and ethylketone with various electron donors or acceptors in the phenyl ring. All the synthesized aroylhydrazones displayed significant iron-chelating activities and eight chelators showed significantly higher stability in rabbit plasma than SIH. Furthermore, some of these chelators were observed to possess higher cytoprotective activities against oxidative injury and/or lower toxicity as compared to SIH. The results of the present study therefore indicate the possible applicability of several of these novel agents in the prevention and/or treatment of cardiovascular disorders with a known (or presumed) role of oxidative stress. In particular, the methylketone HAPI and nitro group-containing NHAPI merit further in vivo investigations.


Assuntos
Aldeídos/química , Antioxidantes/química , Hidrazonas/química , Quelantes de Ferro/síntese química , Aldeídos/sangue , Aldeídos/farmacologia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Linhagem Celular , Estabilidade de Medicamentos , Hidrazonas/sangue , Hidrazonas/farmacologia , Hidrólise , Radical Hidroxila/toxicidade , Quelantes de Ferro/metabolismo , Quelantes de Ferro/farmacologia , Estresse Oxidativo , Coelhos , Ratos
12.
J Chromatogr A ; 1218(3): 416-26, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21168142

RESUMO

This paper presents a systematic study of the retention behavior of a model bisdioxopiperazine drug, dexrazoxane (DEX) and its three polar metabolites (two single open-ring intermediates-B and C and an EDTA-like active compound ADR-925) on different stationary phases intended for hydrophilic interaction liquid chromatography (HILIC). The main aim was to estimate advantages and limitations of HILIC in the simultaneous analysis of a moderately lipophilic parent drug and its highly polar metabolites, including positional isomers, under MS compatible conditions. The study involved two bare silica columns (Ascentic Express HILIC, Atlantis HILIC) and two stationary phases with distinct zwitterionic properties (Obelisc N and ZIC HILIC). The chromatographic conditions (mobile phase strength and pH, column temperature) were systematically modified to assess their impact on retention and separation of the studied compounds. It was found that the bare silica phases were unable to separate the positional isomers (intermediates B and C), whereas both columns with zwitterionic properties (Obelisc N and ZIC HILIC) were able to separate these structurally very similar compounds. However, only ZIC HILIC phase allowed appropriate separation of DEX and all its metabolites to a base line within a single run. A mobile phase composed of a mixture of ammonium formate (0.5 mM) and acetonitrile (25:75, v/v) was suggested as optimal for the simultaneous analysis of DEX and its metabolites on ZIC HILIC. Thereafter, HILIC-LC-MS analysis of DEX and all its metabolites was performed for the first time to obtain basic data about the applicability of the suggested chromatographic conditions. Hence, this study demonstrates that HILIC could be a viable solution for the challenging analysis of moderately polar parent drug along with its highly polar metabolites including the ability to separate structurally very similar compounds, such as positional isomers.


Assuntos
Cromatografia Líquida/métodos , Etilenodiaminas/isolamento & purificação , Glicina/análogos & derivados , Modelos Químicos , Razoxano/isolamento & purificação , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/isolamento & purificação , Etilenodiaminas/química , Glicina/química , Glicina/isolamento & purificação , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Razoxano/química , Espectrometria de Massas em Tandem , Temperatura
13.
Anal Bioanal Chem ; 397(1): 161-171, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20127082

RESUMO

This study was focused on a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method development for quantification of a novel potential anticancer agent, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), in aqueous media. Solid Bp4eT was found to consist predominantly of the Z isomer, while in aqueous media, both isomers coexist. Sufficient separation of both isomers was achieved on a Synergi 4u Polar RP column with a mobile phase composed of 2 mM ammonium formate, acetonitrile, and methanol (30:63:7; v/v/v). The photo diode array analysis of both isomers demonstrated different absorption spectra which hindered UV-based quantification. However, an equal and reproducible response was found for both isomers using an MS detector, which enables the determination of the total content of Bp4eT (i.e., both E- and Z- isomeric forms) by summation of the peak areas of both isomers. 2-Hydroxy-1-naphthylaldehyde 4-methyl-3-thiosemicarbazone (N4mT) was selected as the internal standard. Quantification was performed in selective reaction monitoring using the main fragments of [M+H](+) (240 m/z for Bp4eT and 229 m/z for N4mT). The method was validated over 20-600 ng/ml. This procedure was applied to a preformulation study to determine the proper vehicle for parenteral administration. It was found that Bp4eT was poorly soluble in aqueous media. However, the solubility can be effectively improved using pharmaceutical cosolvents. In fact, a 1:1 mixture of PEG 300/0.14 M saline markedly increased solubility and may be a useful drug formulation for intravenous administration. This investigation further accelerates development of novel anticancer thiosemicarbazones. The described methods will be useful for analogs currently under development and suffering the same analytical issue.


Assuntos
Antineoplásicos/análise , Antineoplásicos/química , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Tiossemicarbazonas/química , Estereoisomerismo , Tiossemicarbazonas/análise
14.
Artigo em Inglês | MEDLINE | ID: mdl-19097949

RESUMO

The aim of this study was to develop and validate HPLC methods for the determination in plasma of two novel thiosemicarbazone anti-tumour drugs developed in our laboratories (Dp44mT and N4mT). The appropriate separations were achieved using a HS F5 HPLC column with the mobile phase composed of a mixture of either acetate buffer/EDTA or EDTA and acetonitrile (62:38 and 50:50, v/v, respectively). The plasma samples were pretreated with SPE (phenyl and C18, respectively). Furthermore, these methods were successfully applied to in vitro plasma stability experiments. The investigation has clearly shown that both thiosemicarbazones are markedly more stable in plasma than their aroylhydrazone forerunners.


Assuntos
Antineoplásicos/sangue , Cromatografia Líquida de Alta Pressão/métodos , Naftalenos/sangue , Tiossemicarbazonas/sangue , Análise de Variância , Animais , Interpretação Estatística de Dados , Estabilidade de Medicamentos , Humanos , Isoniazida/análogos & derivados , Isoniazida/análise , Isoniazida/metabolismo , Piridoxal/análogos & derivados , Piridoxal/análise , Piridoxal/metabolismo , Coelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...