Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Nat Struct Mol Biol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898102

RESUMO

In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70-Ku80 heterodimer (Ku), X-ray repair cross complementing 4 (XRCC4) in complex with DNA ligase 4 (X4L4) and XRCC4-like factor (XLF) form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were recently obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at residue resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs lead to the formation of XLF and X4L4 condensates in vitro, which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome-editing strategies.

2.
EBioMedicine ; 101: 105035, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401418

RESUMO

BACKGROUND: While mutation-derived neoantigens are well recognized in generating anti-tumour T cell response, increasing evidences highlight the complex association between tumour mutation burden (TMB) and tumour infiltrating lymphocytes (TILs). The exploration of non-TMB determinants of active immune response could improve the prognosis prediction and provide guidance for current immunotherapy. METHODS: The transcriptomic and whole exome sequence data in The Cancer Genome Atlas were used to examine the relationship between TMB and exhausted CD8+ T cells (Tex), as an indicator of tumour antigen-specific T cells across nine major cancer types. Computational clustering analysis was performed on 4510 tumours to identify different immune profiles. NanoString gene expression analysis and single cell RNA-seq analysis using fresh human breast cancer were performed for finding validation. FINDINGS: TMB was found to be poorly correlated with active immune response in various cancer types. Patient clustering analysis revealed a group of tumours with abundant Tex but low TMB. In those tumours, we observed significantly higher expression of the stimulator of interferon genes (STING) signalling. Dendritic cells, particularly those of BATF3+ lineage, were also found to be essential for accumulation of Tex within tumours. Mechanistically, loss of genomic and cellular integrity, marked by decreased DNA damage repair, defective replication stress response, and increased apoptosis were shown to drive STING activation. INTERPRETATION: These results highlight that TMB alone does not fully predict tumour immune profiles, with STING signalling compensating for low TMB in non-hypermutated tumours to enhance anti-tumour immunity. Translating these results, STING agonists may benefit patients with non-hypermutated tumours. STING activation may serve as an additional biomarker to predict response to immune checkpoint blockades alongside TMB. Our research also unravelled the interplay between genomic instability and STING activation, informing potential combined chemotherapy targeting the axis of genomic integrity and immunotherapy. FUNDING: City of Hope Christopher Family Endowed Innovation Fund for Alzheimer's Disease and Breast Cancer Research in honor of Vineta Christopher; Breast Cancer Alliance Early Career Investigator Award; National Cancer Institute of the National Institutes of Health under award number R01CA256989 and R01CA240392.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Mutação , Prognóstico , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Biomarcadores Tumorais/genética , Antígenos de Neoplasias/genética
3.
bioRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37662271

RESUMO

The mammalian RAD52 protein is a DNA repair factor that has both strand annealing and recombination mediator activities, yet is dispensable for cell viability. To characterize genetic contexts that reveal dependence on RAD52 to sustain cell viability (i.e., synthetic lethal relationships), we performed genome-wide CRISPR knock-out screens. Subsequent secondary screening found that depletion of ERCC6L in RAD52-deficient cells causes reduced viability and elevated genome instability, measured as accumulation of 53BP1 into nuclear foci. Furthermore, loss of RAD52 causes elevated levels of anaphase ultrafine bridges marked by ERCC6L, and conversely depletion of ERCC6L causes elevated RAD52 foci both in prometaphase and interphase cells. These effects were enhanced with combination treatments using hydroxyurea and the topoisomerase IIα inhibitor ICRF-193, and the timing of these treatments are consistent with defects in addressing such stress in mitosis. Thus, loss of RAD52 appears to cause an increased reliance on ERCC6L in mitosis, and vice versa. Consistent with this notion, combined depletion of ERCC6L and disrupting G2/M progression via CDK1 inhibition causes a marked loss of viability in RAD52-deficient cells. We suggest that RAD52 and ERCC6L play compensatory roles in protecting genome stability in mitosis.

4.
bioRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37503201

RESUMO

In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70/80 heterodimer (Ku), XRCC4 in complex with DNA Ligase 4 (X4L4), and XLF form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) have recently been obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here, we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at atomic resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs led to the formation of XLF and X4L4 condensates in vitro which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome editing strategies.

5.
J Clin Invest ; 133(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463047

RESUMO

RNA splicing factor SF3B1 is recurrently mutated in various cancers, particularly in hematologic malignancies. We previously reported that coexpression of Sf3b1 mutation and Atm deletion in B cells, but not either lesion alone, leads to the onset of chronic lymphocytic leukemia (CLL) with CLL cells harboring chromosome amplification. However, the exact role of Sf3b1 mutation and Atm deletion in chromosomal instability (CIN) remains unclear. Here, we demonstrated that SF3B1 mutation promotes centromeric R-loop (cen-R-loop) accumulation, leading to increased chromosome oscillation, impaired chromosome segregation, altered spindle architecture, and aneuploidy, which could be alleviated by removal of cen-R-loop and exaggerated by deletion of ATM. Aberrant splicing of key genes involved in R-loop processing underlay augmentation of cen-R-loop, as overexpression of the normal isoform, but not the altered form, mitigated mitotic stress in SF3B1-mutant cells. Our study identifies a critical role of splice variants in linking RNA splicing dysregulation and CIN and highlights cen-R-loop augmentation as a key mechanism for leukemogenesis.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Estruturas R-Loop , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Mutação , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
6.
Br J Cancer ; 129(3): 444-454, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386138

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a high mortality rate due to a lack of therapeutic targets. Many TNBC cells are reliant on extracellular arginine for survival and express high levels of binding immunoglobin protein (BiP), a marker of metastasis and endoplasmic reticulum (ER) stress response. METHODS: In this study, the effect of arginine shortage on BiP expression in the TNBC cell line MDA-MB-231 was evaluated. Two stable cell lines were generated in MDA-MB-231 cells: the first expressed wild-type BiP, and the second expressed a mutated BiP free of the two arginine pause-site codons, CCU and CGU, termed G-BiP. RESULTS: The results showed that arginine shortage induced a non-canonical ER stress response by inhibiting BiP translation via ribosome pausing. Overexpression of G-BiP in MDA-MB-231 cells promoted cell resistance to arginine shortage compared to cells overexpressing wild-type BiP. Additionally, limiting arginine led to decreased levels of the spliced XBP1 in the G-BiP overexpressing cells, potentially contributing to their improved survival compared to the parental WT BiP overexpressing cells. CONCLUSION: In conclusion, these findings suggest that the downregulation of BiP disrupts proteostasis during arginine shortage-induced non-canonical ER stress and plays a key role in cell growth inhibition, indicating BiP as a target of codon-specific ribosome pausing upon arginine shortage.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Transporte , Arginina/metabolismo , Ribossomos , Linhagem Celular Tumoral
7.
Cell Rep ; 42(4): 112296, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36961817

RESUMO

The arginine dependency of cancer cells creates metabolic vulnerability. In this study, we examine the impact of arginine availability on DNA replication and genotoxicity resistance. Using DNA combing assays, we find that limiting extracellular arginine results in the arrest of cancer cells at S phase and a slowing or stalling of DNA replication. The translation of new histone H4 is arginine dependent and influences DNA replication. Increased proliferating cell nuclear antigen (PCNA) occupancy and helicase-like transcription factor (HLTF)-catalyzed PCNA K63-linked polyubiquitination protect arginine-starved cells from DNA damage. Arginine-deprived cancer cells display tolerance to genotoxicity in a PCNA K63-linked polyubiquitination-dependent manner. Our findings highlight the crucial role of extracellular arginine in nutrient-regulated DNA replication and provide potential avenues for the development of cancer treatments.


Assuntos
Dano ao DNA , Histonas , Antígeno Nuclear de Célula em Proliferação/metabolismo , Histonas/metabolismo , Ubiquitinação , Replicação do DNA
8.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778247

RESUMO

The unique arginine dependencies of cancer cell proliferation and survival creates metabolic vulnerability. Here, we investigate the impact of extracellular arginine availability on DNA replication and genotoxic resistance. Using DNA combing assays, we find that when extracellular arginine is limited, cancer cells are arrested at S-phase and DNA replication forks slow or stall instantly until arginine is re-supplied. The translation of new histone H4 is arginine-dependent and impacts DNA replication and the expression of newly synthesized histone H4 is reduced in the avascular nutrient-poor breast cancer xenograft tumor cores. Furthermore, we demonstrate that increased PCNA occupancy and HLTF-catalyzed PCNA K63-linked polyubiquitination protects arginine-starved cells from hydroxyurea-induced, DNA2-catalyzed nascent strand degradation. Finally, arginine-deprived cancer cells are tolerant to genotoxic insults in a PCNA K63-linked polyubiquitination-dependent manner. Together, these findings reveal that extracellular arginine is the "linchpin" for nutrient-regulated DNA replication. Such information could be leveraged to expand current modalities or design new drug targets against cancer.

9.
Nucleic Acids Res ; 51(2): 650-667, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36620890

RESUMO

Repeat-mediated deletions (RMDs) are a type of chromosomal rearrangement between two homologous sequences that causes loss of the sequence between the repeats, along with one of the repeats. Sequence divergence between repeats suppresses RMDs; the mechanisms of such suppression and of resolution of the sequence divergence remains poorly understood. We identified RMD regulators using a set of reporter assays in mouse cells that test two key parameters: repeat sequence divergence and the distances between one repeat and the initiating chromosomal break. We found that the mismatch repair factor MLH1 suppresses RMDs with sequence divergence in the same pathway as MSH2 and MSH6, and which is dependent on residues in MLH1 and its binding partner PMS2 that are important for nuclease activity. Additionally, we found that the resolution of sequence divergence in the RMD product has a specific polarity, where divergent bases that are proximal to the chromosomal break end are preferentially removed. Moreover, we found that the domain of MLH1 that forms part of the MLH1-PMS2 endonuclease is important for polarity of resolution of sequence divergence. We also identified distinctions between MLH1 versus TOP3α in regulation of RMDs. We suggest that MLH1 suppresses RMDs with sequence divergence, while also promoting directional resolution of sequence divergence in the RMD product.


Assuntos
Quebra Cromossômica , Proteínas de Ligação a DNA , Proteína 1 Homóloga a MutL , Animais , Camundongos , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo
10.
DNA Repair (Amst) ; 119: 103394, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36095925

RESUMO

O-Linked ß-N-acetylglucosamine glycosylation (O-GlcNAcylation) to serine or threonine residues is a reversible and dynamic post-translational modification. O-GlcNAc transferase (OGT) is the only enzyme for O-GlcNAcylation, and is a potential cancer therapeutic target in combination with clastogenic (i.e., chromosomal breaking) therapeutics. Thus, we sought to examine the influence of O-GlcNAcylation on chromosomal break repair. Using a set of DNA double strand break (DSB) reporter assays, we found that the depletion of OGT, and its inhibition with a small molecule each caused a reduction in repair pathways that involve use of homology: RAD51-dependent homology-directed repair (HDR), and single strand annealing. In contrast, such OGT disruption did not obviously affect chromosomal break end joining, and furthermore caused an increase in homology-directed gene targeting. Such disruption in OGT also caused a reduction in clonogenic survival, as well as modifications to cell cycle profiles, particularly an increase in G1-phase cells. We also examined intermediate steps of HDR, finding no obvious effects on an assay for DSB end resection, nor for RAD51 recruitment into ionizing radiation induced foci (IRIF) in proliferating cells. However, we also found that the influence of OGT on HDR and homology-directed gene targeting were dependent on RAD52, and that OGT is important for RAD52 IRIF in proliferating cells. Thus, we suggest that OGT is important for regulation of HDR that is partially linked to RAD52 function.


Assuntos
Acetilglucosamina , Quebra Cromossômica , Acetilglucosamina/metabolismo , DNA , Humanos , N-Acetilglucosaminiltransferases , Serina/metabolismo , Treonina/metabolismo
11.
DNA Repair (Amst) ; 118: 103380, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926296

RESUMO

Chromosomal DNA double-strand breaks (DSBs) are the effective lesion of radiotherapy and other clastogenic cancer therapeutics, and are also the initiating event of many approaches to gene editing. Ligation of the DSBs by end joining (EJ) pathways can restore the broken chromosome, but the repair junctions can have insertion/deletion (indel) mutations. The indel patterns resulting from DSB EJ are likely defined by the initial structure of the DNA ends, how the ends are processed and synapsed prior to ligation, and the factors that mediate the ligation step. In this review, we describe key factors that influence these steps of DSB EJ in mammalian cells, which is significant both for understanding mutagenesis resulting from clastogenic cancer therapeutics, and for developing approaches to manipulating gene editing outcomes.


Assuntos
Quebra Cromossômica , Quebras de DNA de Cadeia Dupla , Animais , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Humanos , Mamíferos/genética , Mutagênese
12.
Nat Commun ; 13(1): 3662, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760797

RESUMO

Canonical non-homologous end joining (C-NHEJ) factors can assemble into a long-range (LR) complex with DNA ends relatively far apart that contains DNAPKcs, XLF, XRCC4, LIG4, and the KU heterodimer and a short-range (SR) complex lacking DNAPKcs that has the ends positioned for ligation. Since the SR complex can form de novo, the role of the LR complex (i.e., DNAPKcs) for chromosomal EJ is unclear. We have examined EJ of chromosomal blunt DNA double-strand breaks (DSBs), and found that DNAPKcs is significantly less important than XLF for such EJ. However, weakening XLF via disrupting interaction interfaces causes a marked requirement for DNAPKcs, its kinase activity, and its ABCDE-cluster autophosphorylation sites for blunt DSB EJ. In contrast, other aspects of genome maintenance are sensitive to DNAPKcs kinase inhibition in a manner that is not further enhanced by XLF loss (i.e., suppression of homology-directed repair and structural variants, and IR-resistance). We suggest that DNAPKcs is required to position a weakened XLF in an LR complex that can transition into a functional SR complex for blunt DSB EJ, but also has distinct functions for other aspects of genome maintenance.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Autoantígeno Ku/genética
13.
Nucleic Acids Res ; 50(8): 4732-4754, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35420136

RESUMO

SUMOylation is critical for numerous cellular signalling pathways, including the maintenance of genome integrity via the repair of DNA double-strand breaks (DSBs). If misrepaired, DSBs can lead to cancer, neurodegeneration, immunodeficiency and premature ageing. Using systematic human proteome microarray screening combined with widely applicable carbene footprinting, genetic code expansion and high-resolution structural profiling, we define two non-conventional and topology-selective SUMO2-binding regions on XRCC4, a DNA repair protein important for DSB repair by non-homologous end-joining (NHEJ). Mechanistically, the interaction of SUMO2 and XRCC4 is incompatible with XRCC4 binding to three other proteins important for NHEJ-mediated DSB repair. These findings are consistent with SUMO2 forming a redundant NHEJ layer with the potential to regulate different NHEJ complexes at distinct levels including, but not limited to, XRCC4 interactions with XLF, LIG4 and IFFO1. Regulation of NHEJ is not only relevant for carcinogenesis, but also for the design of precision anti-cancer medicines and the optimisation of CRISPR/Cas9-based gene editing. In addition to providing molecular insights into NHEJ, this work uncovers a conserved SUMO-binding module and provides a rich resource on direct SUMO binders exploitable towards uncovering SUMOylation pathways in a wide array of cellular processes.


Assuntos
Reparo do DNA por Junção de Extremidades , Reparo do DNA , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Humanos , Análise em Microsséries , Ligação Proteica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Sumoilação
14.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35409392

RESUMO

PURPOSE: The purpose of the present study is to investigate the expression of aldehyde dehydrogenases (ALDHs) in rabbit corneas with limbal stem cell deficiency (LSCD) and corneas treated with cultured autologous oral mucosa epithelial cell sheet CAOMECS designed to reconstruct the ocular surface with LSCD. METHODS: New Zealand white rabbit autologous oral mucosal epithelial cells were isolated from a buccal biopsy and cultured to be grafted back onto corneas of rabbit model of LSCD. Immunofluorescent staining and Western blot analysis were used to compare the expression of ALDH1A1 and ALDH1A3 in healthy, LSCD-diseased, CAOMECS treated corneas. Human oral mucosal and corneal epithelial cells (OMECS and CECs) were cultured and treated with retinoic acid (RA) to further investigate the expression of ALDHs. RESULTS: In healthy corneas, ALDH1A1 and ALDH1A3 were markedly expressed in basal cells of corneal epithelium. In LSCD diseased corneas, ALDH1A1 and ALDH1A3 were markedly expressed in the conjunctivalized apical epithelial cells, the goblet cells, and the stroma. CAOMECS grafted corneas showed a decreased expression of ALDHs as compared to LSCD diseased corneas. Western blot analysis confirmed the up regulation of ALDH1A1 and ALDH1A3 expression in LSCD-diseased corneal epithelial cells. CAOMECS expressed low levels of ALDH1A1 and ALDH1A3, as compared to diseased CECs (D-CEC). When ALDH1A3 was up regulated by retinoic acid treatment in OMECS, Pax-6 expression was down regulated, suggesting a decrease in regenerative capacity when ALDH enzymes are up regulated. CONCLUSIONS: These findings report for the first time the up regulation of ALDH1A1 and ALDH1A3 in rabbit corneas with LSCD and document that CAOMECS grafting used to reconstruct corneal epithelium may reduce the expression levels of ALDH enzymes.


Assuntos
Doenças da Córnea , Limbo da Córnea , Aldeídos/metabolismo , Animais , Doenças da Córnea/metabolismo , Células Epiteliais/metabolismo , Oxirredutases/metabolismo , Coelhos , Células-Tronco/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia
15.
Cell Tissue Res ; 386(1): 47-57, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34302219

RESUMO

The present study reports the feasibility and successful production of rabbit cG-CAOMECS, designed to reconstruct corneal epithelium of patients with bilateral limbal stem cell deficiency. To produce a safe, chemically defined and FDA compliant cG-CAOMECS, oral mucosal epithelial cells were isolated from a biopsy of rabbit buccal tissue and seeded on a cGMP-certified cell culture surface coated with GMP-grade extracellular matrix. A newly designed clinical-grade medium (KaFa™ medium) was utilized to carry out cell expansion. Detachment and harvesting of the produced cell sheet was accomplished using collagenase treatment. Live cell imaging and morphological analysis techniques were used to examine cell growth. Cells attached onto the surface and self-assembled into colony-forming units (CFUs). Microscopic examination showed that CFUs formed during the first 5 days, and basal monolayer cell sheet formed in less than 10 days. Cells expanded to form a multilayered epithelial cell sheet that was harvested after 17-19 days in culture. Immunostaining and Western blot analyses showed that deltaNp63 was expressed in the basal cells and K3/K12 was expressed in the apical cells, indicating the presence of corneal epithelial-like cells in the produced cell sheet. Adhesion molecules, E-cadherin, beta-catenin, and Cnx43 were also expressed and exhibited the epithelial integrity of the cell sheet. The expression of integrin-beta1 and beta4 confirmed that the collagenase treatment used for detaching and harvesting the cell sheet did not have adverse effects. Our results showed that the utilization of clinical-grade and FDA-approved reagents successfully supported the production of cG-CAMECS.


Assuntos
Células Epiteliais/metabolismo , Mucosa Bucal/metabolismo , Animais , Células Cultivadas , Células Epiteliais/citologia , Humanos , Mucosa Bucal/citologia , Coelhos
16.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34117057

RESUMO

Genome-embedded ribonucleotides arrest replicative DNA polymerases (Pols) and cause DNA breaks. Whether mammalian DNA repair Pols efficiently use template ribonucleotides and promote RNA-templated DNA repair synthesis remains unknown. We find that human Polθ reverse transcribes RNA, similar to retroviral reverse transcriptases (RTs). Polθ exhibits a significantly higher velocity and fidelity of deoxyribonucleotide incorporation on RNA versus DNA. The 3.2-Šcrystal structure of Polθ on a DNA/RNA primer-template with bound deoxyribonucleotide reveals that the enzyme undergoes a major structural transformation within the thumb subdomain to accommodate A-form DNA/RNA and forms multiple hydrogen bonds with template ribose 2'-hydroxyl groups like retroviral RTs. Last, we find that Polθ promotes RNA-templated DNA repair in mammalian cells. These findings suggest that Polθ was selected to accommodate template ribonucleotides during DNA repair.


Assuntos
DNA Polimerase Dirigida por DNA , RNA , Animais , DNA/química , Reparo do DNA , DNA Polimerase Dirigida por DNA/química , Desoxirribonucleotídeos , Humanos , Mamíferos/genética , Ribonucleotídeos
17.
EMBO J ; 40(5): e106309, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459381

RESUMO

The N6-methyladenosine (m6 A) RNA modification serves crucial functions in RNA metabolism; however, the molecular mechanisms underlying the regulation of m6 A are not well understood. Here, we establish arginine methylation of METTL14, a component of the m6 A methyltransferase complex, as a novel pathway that controls m6 A deposition in mammalian cells. Specifically, protein arginine methyltransferase 1 (PRMT1) interacts with, and methylates the intrinsically disordered C terminus of METTL14, which promotes its interaction with RNA substrates, enhances its RNA methylation activity, and is crucial for its interaction with RNA polymerase II (RNAPII). Mouse embryonic stem cells (mESCs) expressing arginine methylation-deficient METTL14 exhibit significantly reduced global m6 A levels. Transcriptome-wide m6 A analysis identified 1,701 METTL14 arginine methylation-dependent m6 A sites located in 1,290 genes involved in various cellular processes, including stem cell maintenance and DNA repair. These arginine methylation-dependent m6 A sites are associated with enhanced translation of genes essential for the repair of DNA interstrand crosslinks; thus, METTL14 arginine methylation-deficient mESCs are hypersensitive to DNA crosslinking agents. Collectively, these findings reveal important aspects of m6 A regulation and new functions of arginine methylation in RNA metabolism.


Assuntos
Adenosina/análogos & derivados , Arginina/química , Metiltransferases/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Polimerase II/metabolismo , Adenosina/química , Animais , Citoplasma , Metiltransferases/química , Metiltransferases/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteína-Arginina N-Metiltransferases/genética , RNA Polimerase II/genética , Transcriptoma
18.
Elife ; 92020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33289484

RESUMO

Non-homologous end joining (NHEJ) is the predominant pathway that repairs DNA double-strand breaks in vertebrates. During NHEJ DNA ends are held together by a multi-protein synaptic complex until they are ligated. Here, we use Xenopus laevis egg extract to investigate the role of the intrinsically disordered C-terminal tail of the XRCC4-like factor (XLF), a critical factor in end synapsis. We demonstrate that the XLF tail along with the Ku-binding motif (KBM) at the extreme C-terminus are required for end joining. Although the underlying sequence of the tail can be varied, a minimal tail length is required for NHEJ. Single-molecule FRET experiments that observe end synapsis in real-time show that this defect is due to a failure to closely align DNA ends. Our data supports a model in which a single C-terminal tail tethers XLF to Ku, while allowing XLF to form interactions with XRCC4 that enable synaptic complex formation.


Assuntos
Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Cromatografia em Gel , Reparo do DNA por Junção de Extremidades/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Immunoblotting , Óvulo/metabolismo , Alinhamento de Sequência , Proteínas de Xenopus/genética , Xenopus laevis/genética
19.
Nucleic Acids Res ; 48(11): 6032-6052, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427332

RESUMO

Chromosomal double strand breaks (DSBs) can initiate several signaling events, such as ubiquitination, however the precise influence of such signaling on DSB repair outcomes remains poorly understood. With an RNA interference screen, we found that the E3 ubiquitin ligase RNF8 suppresses a deletion rearrangement mediated by canonical non-homologous end joining (C-NHEJ). We also found that RNF8 suppresses EJ without insertion/deletion mutations, which is a hallmark of C-NHEJ. Conversely, RNF8 promotes alternative EJ (ALT-EJ) events involving microhomology that is embedded from the edge of the DSB. These ALT-EJ events likely require limited end resection, whereas RNF8 is not required for single-strand annealing repair involving extensive end resection. Thus, RNF8 appears to specifically facilitate repair events requiring limited end resection, which we find is dependent on the DSB end protection factor KU. However, we also find that RNF8 is important for homology-directed repair (HDR) independently of KU, which appears linked to promoting PALB2 function. Finally, the influence of RNF8 on EJ is distinct from 53BP1 and the ALT-EJ factor, POLQ. We suggest that RNF8 mediates both ALT-EJ and HDR, but via distinct mechanisms, since only the former is dependent on KU.


Assuntos
Quebra Cromossômica , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Autoantígeno Ku/metabolismo , Reparo de DNA por Recombinação , Ubiquitina-Proteína Ligases/metabolismo , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Proteínas de Ligação a DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi/metabolismo , Humanos , Mutação INDEL , Proteínas Nucleares/metabolismo , Domínios Proteicos , Interferência de RNA , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação/genética , Deleção de Sequência , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/química , DNA Polimerase teta
20.
Mol Oncol ; 14(6): 1124-1133, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32175645

RESUMO

Women who carry pathogenic mutations in BRCA1 and BRCA2 have a lifetime risk of developing breast cancer of up to 80%. However, risk estimates vary in part due to genetic modifiers. We investigated the association of the RAD52 S346X variant as a modifier of the risk of developing breast and ovarian cancers in BRCA1 and BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2. The RAD52 S346X allele was associated with a reduced risk of developing breast cancer in BRCA2 carriers [per-allele hazard ratio (HR) = 0.69, 95% confidence interval (CI) 0.56-0.86; P = 0.0008] and to a lesser extent in BRCA1 carriers (per-allele HR = 0.78, 95% CI 0.64-0.97, P = 0.02). We examined how this variant affected DNA repair. Using a reporter system that measures repair of DNA double-strand breaks (DSBs) by single-strand annealing (SSA), expression of hRAD52 suppressed the loss of this repair in Rad52-/- mouse embryonic stem cells. When hRAD52 S346X was expressed in these cells, there was a significantly reduced frequency of SSA. Interestingly, expression of hRAD52 S346X also reduced the stimulation of SSA observed upon depletion of BRCA2, demonstrating the reciprocal roles for RAD52 and BRCA2 in the control of DSB repair by SSA. From an immunofluorescence analysis, we observed little nuclear localization of the mutant protein as compared to the wild-type; it is likely that the reduced nuclear levels of RAD52 S346X explain the diminished DSB repair by SSA. Altogether, we identified a genetic modifier that protects against breast cancer in women who carry pathogenic mutations in BRCA2 (P = 0.0008) and to a lesser extent BRCA1 (P = 0.02). This RAD52 mutation causes a reduction in DSB repair by SSA, suggesting that defects in RAD52-dependent DSB repair are linked to reduced tumor risk in BRCA2-mutation carriers.


Assuntos
Proteína BRCA2/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Animais , Proteína BRCA1/genética , Citoplasma/metabolismo , DNA de Neoplasias/metabolismo , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Camundongos , Neoplasias Ovarianas/genética , Fatores de Risco , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...