Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 25(10): 1495-1505, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723298

RESUMO

In animals, PIWI-interacting RNAs (piRNAs) direct PIWI proteins to silence complementary targets such as transposons. In Drosophila and other species with a maternally specified germline, piRNAs deposited in the egg initiate piRNA biogenesis in the progeny. However, Y chromosome loci cannot participate in such a chain of intergenerational inheritance. How then can the biogenesis of Y-linked piRNAs be initiated? Here, using Suppressor of Stellate (Su(Ste)), a Y-linked Drosophila melanogaster piRNA locus as a model, we show that Su(Ste) piRNAs are made in the early male germline via 5'-to-3' phased piRNA biogenesis initiated by maternally deposited 1360/Hoppel transposon piRNAs. Notably, deposition of Su(Ste) piRNAs from XXY mothers obviates the need for phased piRNA biogenesis in sons. Together, our study uncovers a developmentally programmed, intergenerational mechanism that allows fly mothers to protect their sons using a Y-linked piRNA locus.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , RNA de Interação com Piwi , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Argonautas/genética
2.
Front Cell Neurosci ; 17: 1214084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37519633

RESUMO

Introduction: Understanding how photoreceptor genes are regulated is important for investigating retinal development and disease. While much is known about gene regulation in cones, the mechanism by which tandemly-replicated opsins, such as human long wavelength-sensitive and middle wavelength-sensitive opsins, are differentially regulated remains elusive. In this study, we aimed to further our understanding of transcriptional heterogeneity in cones that express tandemly-replicated opsins and the regulation of such differential expression using zebrafish, which express the tandemly-replicated opsins lws1 and lws2. Methods: We performed bulk and single cell RNA-Seq of LWS1 and LWS2 cones, evaluated expression patterns of selected genes of interest using multiplex fluorescence in situ hybridization, and used exogenous thyroid hormone (TH) treatments to test selected genes for potential control by thyroid hormone: a potent, endogenous regulator of lws1 and lws2 expression. Results: Our studies indicate that additional transcriptional differences beyond opsin expression exist between LWS1 and LWS2 cones. Bulk RNA-Seq results showed 95 transcripts enriched in LWS1 cones and 186 transcripts enriched in LWS2 cones (FC > 2, FDR < 0.05). In situ hybridization results also reveal underlying heterogeneity within the lws1- and lws2-expressing populations. This heterogeneity is evident in cones of mature zebrafish, and further heterogeneity is revealed in transcriptional responses to TH treatments. Discussion: We found some evidence of coordinate regulation of lws opsins and other genes by exogenous TH in LWS1 vs. LWS2 cones, as well as evidence of gene regulation not mediated by TH. The transcriptional differences between LWS1 and LWS2 cones are likely controlled by multiple signals, including TH.

3.
Hum Mol Genet ; 32(3): 431-449, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35997788

RESUMO

Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in Müller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s).


Assuntos
Síndromes de Usher , Humanos , Síndromes de Usher/genética , Síndromes de Usher/terapia , Síndromes de Usher/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Retina/metabolismo , Células Fotorreceptoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
4.
PLoS Genet ; 17(11): e1009881, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780472

RESUMO

Many tissue-specific stem cells maintain the ability to produce multiple cell types during long periods of non-division, or quiescence. FOXO transcription factors promote quiescence and stem cell maintenance, but the mechanisms by which FOXO proteins promote multipotency during quiescence are still emerging. The single FOXO ortholog in C. elegans, daf-16, promotes entry into a quiescent and stress-resistant larval stage called dauer in response to adverse environmental cues. During dauer, stem and progenitor cells maintain or re-establish multipotency to allow normal development to resume after dauer. We find that during dauer, daf-16/FOXO prevents epidermal stem cells (seam cells) from prematurely adopting differentiated, adult characteristics. In particular, dauer larvae that lack daf-16 misexpress collagens that are normally adult-enriched. Using col-19p::gfp as an adult cell fate marker, we find that all major daf-16 isoforms contribute to opposing col-19p::gfp expression during dauer. By contrast, daf-16(0) larvae that undergo non-dauer development do not misexpress col-19p::gfp. Adult cell fate and the timing of col-19p::gfp expression are regulated by the heterochronic gene network, including lin-41 and lin-29. lin-41 encodes an RNA-binding protein orthologous to LIN41/TRIM71 in mammals, and lin-29 encodes a conserved zinc finger transcription factor. In non-dauer development, lin-41 opposes adult cell fate by inhibiting the translation of lin-29, which directly activates col-19 transcription and promotes adult cell fate. We find that during dauer, lin-41 blocks col-19p::gfp expression, but surprisingly, lin-29 is not required in this context. Additionally, daf-16 promotes the expression of lin-41 in dauer larvae. The col-19p::gfp misexpression phenotype observed in dauer larvae with reduced daf-16 requires the downregulation of lin-41, but does not require lin-29. Taken together, this work demonstrates a novel role for daf-16/FOXO as a heterochronic gene that promotes expression of lin-41/TRIM71 to contribute to multipotent cell fate in a quiescent stem cell model.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/citologia , Linhagem da Célula , Fatores de Transcrição Forkhead/fisiologia , Fatores de Transcrição/fisiologia , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Colágeno/metabolismo , Fatores de Transcrição Forkhead/genética , Larva/citologia , Larva/metabolismo , Fatores de Transcrição/genética
5.
Elife ; 102021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33587037

RESUMO

Piwi-interacting RNAs (piRNAs) play essential roles in silencing repetitive elements to promote fertility in metazoans. Studies in worms, flies, and mammals reveal that piRNAs are expressed in a sex-specific manner. However, the mechanisms underlying this sex-specific regulation are unknown. Here we identify SNPC-1.3, a male germline-enriched variant of a conserved subunit of the small nuclear RNA-activating protein complex, as a male-specific piRNA transcription factor in Caenorhabditis elegans. SNPC-1.3 colocalizes with the core piRNA transcription factor, SNPC-4, in nuclear foci of the male germline. Binding of SNPC-1.3 at male piRNA loci drives spermatogenic piRNA transcription and requires SNPC-4. Loss of snpc-1.3 leads to depletion of male piRNAs and defects in male-dependent fertility. Furthermore, TRA-1, a master regulator of sex determination, binds to the snpc-1.3 promoter and represses its expression during oogenesis. Loss of TRA-1 targeting causes ectopic expression of snpc-1.3 and male piRNAs during oogenesis. Thus, sexually dimorphic regulation of snpc-1.3 expression coordinates male and female piRNA expression during germline development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Masculino , RNA Interferente Pequeno/genética , Especificidade da Espécie , Espermatogênese , Fatores de Transcrição/genética
6.
Genome Res ; 30(6): 814-825, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32641298

RESUMO

Less than half of human zygotes survive to birth, primarily due to aneuploidies of meiotic or mitotic origin. Mitotic errors generate chromosomal mosaicism, defined by multiple cell lineages with distinct chromosome complements. The incidence and impacts of mosaicism in human embryos remain controversial, with most previous studies based on bulk DNA assays or comparisons of multiple biopsies of few embryonic cells. Single-cell genomic data provide an opportunity to quantify mosaicism on an embryo-wide scale. To this end, we extended an approach to infer aneuploidies based on dosage-associated changes in gene expression by integrating signatures of allelic imbalance. We applied this method to published single-cell RNA sequencing data from 74 human embryos, spanning the morula to blastocyst stages. Our analysis revealed widespread mosaic aneuploidies, with 59 of 74 (80%) embryos harboring at least one putative aneuploid cell (1% FDR). By clustering copy number calls, we reconstructed histories of chromosome segregation, inferring that 55 (74%) embryos possessed mitotic aneuploidies and 23 (31%) embryos possessed meiotic aneuploidies. We found no significant enrichment of aneuploid cells in the trophectoderm compared to the inner cell mass, although we do detect such enrichment in data from later postimplantation stages. Finally, we observed that aneuploid cells up-regulate immune response genes and down-regulate genes involved in proliferation, metabolism, and protein processing, consistent with stress responses documented in other stages and systems. Together, our work provides a high-resolution view of aneuploidy in preimplantation embryos, and supports the conclusion that low-level mosaicism is a common feature of early human development.


Assuntos
Aneuploidia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/genética , Mosaicismo , Análise de Célula Única/métodos , Algoritmos , Alelos , Desequilíbrio Alélico , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Biológicos , Especificidade de Órgãos , Gravidez , RNA Citoplasmático Pequeno/genética , Análise de Sequência de RNA
7.
Hum Mol Genet ; 29(12): 2022-2034, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32246154

RESUMO

Genome-wide association studies (GWAS) have identified 52 independent variants at 34 genetic loci that are associated with age-related macular degeneration (AMD), the most common cause of incurable vision loss in the elderly worldwide. However, causal genes at the majority of these loci remain unknown. In this study, we performed whole exome sequencing of 264 individuals from 63 multiplex families with AMD and analyzed the data for rare protein-altering variants in candidate target genes at AMD-associated loci. Rare coding variants were identified in the CFH, PUS7, RXFP2, PHF12 and TACC2 genes in three or more families. In addition, we detected rare coding variants in the C9, SPEF2 and BCAR1 genes, which were previously suggested as likely causative genes at respective AMD susceptibility loci. Identification of rare variants in the CFH and C9 genes in our study validated previous reports of rare variants in complement pathway genes in AMD. We then extended our exome-wide analysis and identified rare protein-altering variants in 13 genes outside the AMD-GWAS loci in three or more families. Two of these genes, SCN10A and KIR2DL4, are of interest because variants in these genes also showed association with AMD in case-control cohorts, albeit not at the level of genome-wide significance. Our study presents the first large-scale, exome-wide analysis of rare variants in AMD. Further independent replications and molecular investigation of candidate target genes, reported here, would assist in gaining novel insights into mechanisms underlying AMD pathogenesis.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Degeneração Macular/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Receptores KIR2DL4/genética , Idoso , Idoso de 80 Anos ou mais , Exoma/genética , Humanos , Degeneração Macular/patologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento do Exoma
8.
Nat Genet ; 51(6): 1067, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31068672

RESUMO

In the version of this article initially published, in Supplementary Data 5, the logFC, FC, P value and adjusted P value for advanced AMD versus control (DE 4/1) without age correction did not correspond to the correct gene IDs. The errors have been corrected in the HTML version of the article.

9.
Nat Genet ; 51(4): 606-610, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742112

RESUMO

Genome-wide association studies (GWAS) have identified genetic variants at 34 loci contributing to age-related macular degeneration (AMD)1-3. We generated transcriptional profiles of postmortem retinas from 453 controls and cases at distinct stages of AMD and integrated retinal transcriptomes, covering 13,662 protein-coding and 1,462 noncoding genes, with genotypes at more than 9 million common SNPs for expression quantitative trait loci (eQTL) analysis of a tissue not included in Genotype-Tissue Expression (GTEx) and other large datasets4,5. Cis-eQTL analysis identified 10,474 genes under genetic regulation, including 4,541 eQTLs detected only in the retina. Integrated analysis of AMD-GWAS with eQTLs ascertained likely target genes at six reported loci. Using transcriptome-wide association analysis (TWAS), we identified three additional genes, RLBP1, HIC1 and PARP12, after Bonferroni correction. Our studies expand the genetic landscape of AMD and establish the Eye Genotype Expression (EyeGEx) database as a resource for post-GWAS interpretation of multifactorial ocular traits.


Assuntos
Predisposição Genética para Doença/genética , Degeneração Macular/genética , Locos de Características Quantitativas/genética , Transcriptoma/genética , Estudos de Casos e Controles , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Retina/fisiopatologia
10.
Dev Cell ; 43(6): 763-779.e4, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29233477

RESUMO

Clinical and genetic heterogeneity associated with retinal diseases makes stem-cell-based therapies an attractive strategy for personalized medicine. However, we have limited understanding of the timing of key events in the developing human retina, and in particular the factors critical for generating the unique architecture of the fovea and surrounding macula. Here we define three key epochs in the transcriptome dynamics of human retina from fetal day (D) 52 to 136. Coincident histological analyses confirmed the cellular basis of transcriptional changes and highlighted the dramatic acceleration of development in the fovea compared with peripheral retina. Human and mouse retinal transcriptomes show remarkable similarity in developmental stages, although morphogenesis was greatly expanded in humans. Integration of DNA accessibility data allowed us to reconstruct transcriptional networks controlling photoreceptor differentiation. Our studies provide insights into human retinal development and serve as a resource for molecular staging of human stem-cell-derived retinal organoids.


Assuntos
Neurogênese/fisiologia , Retina/citologia , Retina/fisiologia , Animais , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Fóvea Central/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Humanos , Macula Lutea/embriologia , Camundongos , Morfogênese , Neurogênese/genética , Neurônios/metabolismo , Retina/embriologia , Retina/crescimento & desenvolvimento , Análise de Sequência de RNA/métodos , Transcriptoma
11.
PLoS One ; 5(10): e13639, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-21049022

RESUMO

BACKGROUND: Multiple excitatory neurotransmitters have been identified in the mammalian taste transduction, with few studies focused on inhibitory neurotransmitters. Since the synthetic enzyme glutamate decarboxylase (GAD) for gamma-aminobutyric acid (GABA) is expressed in a subset of mouse taste cells, we hypothesized that other components of the GABA signaling pathway are likely expressed in this system. GABA signaling is initiated by the activation of either ionotropic receptors (GABA(A) and GABA(C)) or metabotropic receptors (GABA(B)) while it is terminated by the re-uptake of GABA through transporters (GATs). METHODOLOGY/PRINCIPAL FINDINGS: Using reverse transcriptase-PCR (RT-PCR) analysis, we investigated the expression of different GABA signaling molecules in the mouse taste system. Taste receptor cells (TRCs) in the circumvallate papillae express multiple subunits of the GABA(A) and GABA(B) receptors as well as multiple GATs. Immunocytochemical analyses examined the distribution of the GABA machinery in the circumvallate papillae. Both GABA(A)-and GABA(B)- immunoreactivity were detected in the peripheral taste receptor cells. We also used transgenic mice that express green fluorescent protein (GFP) in either the Type II taste cells, which can respond to bitter, sweet or umami taste stimuli, or in the Type III GAD67 expressing taste cells. Thus, we were able to identify that GABAergic receptors are expressed in some Type II and Type III taste cells. Mouse GAT4 labeling was concentrated in the cells surrounding the taste buds with a few positively labeled TRCs at the margins of the taste buds. CONCLUSIONS/SIGNIFICANCE: The presence of GABAergic receptors localized on Type II and Type III taste cells suggests that GABA is likely modulating evoked taste responses in the mouse taste bud.


Assuntos
Receptores de GABA/metabolismo , Papilas Gustativas/metabolismo , Animais , Sequência de Bases , Primers do DNA , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...