Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(29): 6562-6572, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37463394

RESUMO

The interaction between nanoparticles includes several components; however, the most frequently used are electrostatic, caused by overlapping double electrical layers, and London-van der Waals interactions, caused by quantum and thermodynamic fluctuations of electromagnetic fields. Only these two kinds of interaction are considered below. The electrostatic interaction is calculated based on the linearized Poisson-Boltzmann equation for particles with constant electrical potential of the surfaces (constant ζ potentials). An exact solution of the problem is obtained for both identical particles and particles of different sizes. For the London-van der Waals interaction, the screening of static fluctuations and the retardation of electromagnetic fields for the dispersive part of the interaction are taken into account. The total interaction energy for two particles was calculated for a range of possible nanoparticle sizes from 1 to 103 nm and electrolyte concentration from 10-2 to 10-6 mol/L. The predominance of the London-van der Waals force over the shielded electrostatic repulsion force was found at high electrolyte concentrations in the range from 10-2 to 10-3 mol/L at large interparticle distances.

2.
Langmuir ; 38(45): 13935-13942, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36322953

RESUMO

Electrophoretic separation of a fluorescent dye mixture, containing rhodamine B (RB) and fluorescein, in liquid foams stabilized by anionic, cationic, or non-ionic surfactants in water-glycerol mixtures was studied in a custom-designed foam separation device. The effects of the external electric field applied across the foam and the initial pH of the solution on the effectiveness of separation were also studied. The fluid motion due to electroosmosis and the resulting back pressure within the foam and local pH changes were found to be complex and affected the separation. Fluorescein dye molecules, which have a positive or negative charge depending on the solution pH, aggregated in the vicinity of an electrode, leaving a pure band of neutral dye RB. The effectiveness of the separation was quantified by the percentage width of the pure RB band, which was found to be between 29 and 42%. This study demonstrates the potential of liquid foam as a platform for electrophoretic separation.

3.
Langmuir ; 38(20): 6305-6321, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35546544

RESUMO

Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally oriented monolayer of foam (2D foam) composed of anionic, cationic, non-ionic, and zwitterionic surfactants was investigated, probing the effects of changing the gas-liquid and solid-liquid interfaces. Time-lapse recordings were analyzed to investigate the evolution of foam over time subject to varying electric field strengths. Numerical simulations of electroosmotic flow of the same system were performed using the finite element method. Foam stability was affected by the presence of an external electric field in all cases and depended on the surfactant type, strength of the electric field, and the solid material used to construct the foam cell. For the myristyltrimethylammonium bromide (MTAB) foam in a glass cell, the time to collapse 50% of the foam was increased from ∼25 min under no electric field to ∼85 min under an electric field strength of 2000 V/m. In comparison, all other surfactants trialed exhibited faster foam collapse under external electric fields. Numerical simulations provided insight as to how different zeta potentials at the gas-liquid and solid-liquid interfaces affect fluid flow in different elements of the foam structure under external electric fields, leading to a more stable or unstable foam.

4.
ACS Omega ; 6(42): 27763-27772, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34722976

RESUMO

The primary focus of the presented research is to come up with a model that could be utilized to evaluate the permeate content (concentration) of oil drops using a straight (nonconverging) slotted microstructured membrane. The content (concentration) of crude drops in the permeate with a nonconverging slit structure membrane has not been studied before, and the study presented would be a good contribution to the literature. A comparison between the use of a converging (narrowing toward the inside) and a nonconverging slotted pore microstructured membrane is made for the purpose of removing oil content from the produced water. Due to the drag force, the droplets pass through the membrane slots; however, the static force acts in the opposite direction and tries to reject droplets by the membrane. At a certain point, these two forces balance the effect of each other, which is known as "100% cutoff through the membrane". A linear line is obtained by joining the 100% cutoff or rejection point to the 0% rejection point, which is referred to as the "linear fit" in this paper. The linear fit approach could be utilized for estimating rejection below the 100% cutoff point. Various types of crude oil drops obtained from different locations were analyzed experimentally, and the results were compared with the presented model. The proposed model was found to be in agreement with the different types of oil drops. Experimental and predicted results showed that the nonconverging slotted microstructured membrane provided low friction to oil drops through the membrane as compared to the converging slots. Furthermore, the developed model can be utilized to predict the overall oil content in the permeate. This research has great importance and will allow researchers around the globe to estimate crude oil concentration within the allowable limits.

5.
Membranes (Basel) ; 11(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34564526

RESUMO

A new method is proposed to increase the rejection in microfiltration by applying membrane oscillation, using a new type of microfiltration membrane with slotted pores. The oscillations applied to the membrane surface result in reduced membrane fouling and increased separation efficiency. An exact mathematical solution of the flow in the surrounding solution outside the oscillating membrane is developed. The oscillation results in the appearance of a lift velocity, which moves oil particles away from the membrane. The latter results in both reduced membrane fouling and increased oil droplet rejection. This developed model was supported by the experimental results for oil water separation in the produced water treatment. It was proven that the oil droplet concentration was reduced notably in the permeate, due to the membrane oscillation, and that the applied shear rate caused by the membrane oscillation also reduced pore blockage. A four-times lower oil concentration was recorded in the permeate when the membrane vibration frequency was 25 Hz, compared to without membrane vibration. Newly generated microfiltration membranes with slotted pores were used in the experiments.

6.
Adv Colloid Interface Sci ; 288: 102340, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383470

RESUMO

The environmental impacts of the use of synthetic surfactants are discussed in this work such as their high levels of toxicity and low biodegradability. These materials destroy aquatic microbial populations, damage fish and other aquatic life, and reduce photochemical energy conversion efficiency of plants as well as adversely affecting waste-water treatment processes. With global usage of surfactants being over 15 million tonnes annually, and an estimated 60% of surfactant ending up in the aquatic environment, there is an urgent need for alternatives with lower adverse environmental effects; this review explores biosurfactants as potential alternatives. The sources and natural function of biosurfactants are presented, together with their advantages compared with their synthetic counterparts, including their low toxicity and biodegradability. Their comparable effectiveness as surfactants has been demonstrated by surface tension reduction, achieved at much lower critical micelle concentrations that those of synthetic surfactants. The limitations and challenges for the use of biosurfactants are discussed, particularly low production yields; such limitations must be addressed before wide range industrial use of biosurfactants can be achieved. Although there has been focus on achieving greater production yields, a remaining issue is the lack of research into the use of biosurfactants in a greater range of industrial and consumer applications to demonstrate their efficacy and identify candidate biosurfactants for production. This review highlights such research as deserving of further investigation, alongside the ongoing work to optimize the production process.


Assuntos
Tensoativos
7.
Langmuir ; 36(5): 1183-1191, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31957457

RESUMO

Electrokinetic transport of a charged dye within a free liquid film stabilized by a cationic surfactant, trimethyl(tetradecyl)ammonium bromide, subjected to an external electric field was investigated. Confocal laser scanning microscopy was used to visualize fluorescein isothiocyanate (FITC) separation within the stabilized liquid film. Numerical simulations were performed using the finite element method to model the dynamics of charged dye separation fronts observed in the experiments. Because of the electrochemical reactions at the electrodes, significant spatial and temporal pH changes were observed within the liquid film. These local pH changes could affect the local zeta potential at the gas-liquid and solid-liquid film boundaries; hence, the flow field was found to be highly dynamic and complex. The charged dye (FITC) used in the experiments is pH-sensitive, and therefore, electrophoresis of the dye also depended on the local pH. The pH and the electroosmotic flow field predicted from the numerical simulations were useful for understanding charged dye separation near both the anode and the cathode.

8.
Soft Matter ; 15(26): 5331-5344, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31241063

RESUMO

Drainage of foams placed on porous substrates has only recently been theoretically investigated (O. Arjmandi-Tash, N. Kovalchuk, A. Trybala, V. Starov, Foam Drainage Placed on a Porous Substrate, Soft Matter, 2015, 11(18), 3643-3652), where an equation describing foam drainage (with non-slip boundary conditions on the liquid-air interfaces) was combined with that of imbibition of liquid into the thick porous substrate. Foam-based applications have been used as a method of drug delivery, which is a recent and promising area of research related to application of medicinal products onto the skin or hair, which are both thin porous layers. A theory of foam drainage (taking into account surface viscosity) placed on a completely wettable thin porous layer is developed: the rate of foam drainage and imbibition inside the porous layer and other characteristics of the process are predicted. The "effective slip" caused by the surface viscosity increased a movement of the top boundary of the foam. The theoretical predictions are compared with experimental observations of foam drainage placed on thin porous layers. The comparison showed a reasonable agreement between the theoretical predictions and experimental observations. One of the phenomena during foam application is the possibility of a build-up of a free liquid layer on the foam/porous layer interface, which can be very useful for applications. Three different regimes of spreading/imbibition process have been predicted. Conditions and durations of free liquid layer formation have been theoretically predicted and compared with experimental observations.

9.
Langmuir ; 34(19): 5672-5677, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29676571

RESUMO

Equilibrium conditions of droplets on deformable substrates are investigated, and it is proven using Jacobi's sufficient condition that the obtained solutions really provide equilibrium profiles of both the droplet and the deformed support. At the equilibrium, the excess free energy of the system should have a minimum value, which means that both necessary and sufficient conditions of the minimum should be fulfilled. Only in this case, the obtained profiles provide the minimum of the excess free energy. The necessary condition of the equilibrium means that the first variation of the excess free energy should vanish, and the second variation should be positive. Unfortunately, the mentioned two conditions are not the proof that the obtained profiles correspond to the minimum of the excess free energy and they could not be. It is necessary to check whether the sufficient condition of the equilibrium (Jacobi's condition) is satisfied. To the best of our knowledge Jacobi's condition has never been verified for any already published equilibrium profiles of both the droplet and the deformable substrate. A simple model of the equilibrium droplet on the deformable substrate is considered, and it is shown that the deduced profiles of the equilibrium droplet and deformable substrate satisfy the Jacobi's condition, that is, really provide the minimum to the excess free energy of the system. To simplify calculations, a simplified linear disjoining/conjoining pressure isotherm is adopted for the calculations. It is shown that both necessary and sufficient conditions for equilibrium are satisfied. For the first time, validity of the Jacobi's condition is verified. The latter proves that the developed model really provides (i) the minimum of the excess free energy of the system droplet/deformable substrate and (ii) equilibrium profiles of both the droplet and the deformable substrate.

10.
Adv Colloid Interface Sci ; 249: 1, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29157647
11.
Electrophoresis ; 38(20): 2554-2560, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28314051

RESUMO

Fluid flow profiles in free liquid films stabilised by anionic and cationic surfactants under an external electric field were investigated. Depthwise velocity fields were measured at the mid region of the free liquid film by confocal micron-resolution particle image velocimetry and corresponding numerical simulations were performed using Finite Element Method to model the system. Depthwise change in velocity profiles was observed with electroosmotic flow dominating in the vicinity of the gas-liquid and solid-liquid interfaces while backpressure drives fluid in the opposite direction at the core of the film. It was also found that the direction of the flow at various sections of the films depends on the type of surfactant used, but flow features remained the same. Numerical simulations predicted the flow profiles with reasonable accuracy; however, asymmetry of the actual film geometry caused deviations at the top half of the computational domain. Overall, electroosmotic flow profiles within a free liquid film are similar to that of the closed-end solid microchannel. However, the flow direction and features of the velocity profiles can be changed by selecting various types of surfactants. The free liquid films thickness was selected to match dimensions of foam Plateau border. Hence, these findings will be useful in developing a separation system based on foam electrokinetics.


Assuntos
Simulação por Computador , Eletro-Osmose/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Eletricidade , Eletroforese , Reologia , Tensoativos/química
12.
Langmuir ; 33(18): 4367-4385, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28190350

RESUMO

There has been a substantial increase in the number of publications in the field of wetting and spreading since 2010. This increase in the rate of publications can be attributed to the broader application of wetting phenomena in new areas. It is impossible to review such a huge number of publications; that is, some topics in the field of wetting and spreading are selected to be discussed below. These topics are as follows: (i) Contact angle hysteresis on smooth homogeneous solid surfaces via disjoining/conjoining pressure. It is shown that the hysteresis contact angles can be calculated via disjoining/conjoining pressure. The theory indicates that the equilibrium contact angle is closer to a static receding contact angle than to a static advancing contact angle. (ii) The wetting of deformable substrates, which is caused by surface forces action in the vicinity of the apparent three-phase contact line, leading to a deformation on the substrate. (iii) The kinetics of wetting and spreading of non-Newtonian liquid (blood) over porous substrates. We showed that in spite of the enormous complexity of blood, the spreading over porous substrate can be described using a relatively simple model: a power low-shear-thinning non-Newtonian liquid. (iv) The kinetics of spreading of surfactant solutions. In this part, new results related to various surfactant solution mixtures (synergy and crystallization) are discussed, which shows some possible direction for the future revealing of superspreading phenomena. (v) The kinetics of spreading of surfactant solutions over hair. Fundamental problems to be solved are identified.

13.
Langmuir ; 32(21): 5333-40, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27163285

RESUMO

A theory of contact angle hysteresis of a meniscus inside thin capillaries with smooth, homogeneous solid walls is developed in terms of surface forces (disjoining/conjoining pressure isotherm) using a quasi-equilibrium approach. The disjoining/conjoining pressure isotherm includes electrostatic, intermolecular, and structural components. The values of the static receding θr, advancing θa, and equilibrium θe contact angles in thin capillaries were calculated on the basis of the shape of the disjoining/conjoining pressure isotherm. It was shown that both advancing and receding contact angles depend on the capillary radius. The suggested mechanism of the contact angle hysteresis has a direct experimental confirmation: the process of receding is accompanied by the formation of thick ß-films on the capillary walls. The effect of the transition from partial to complete wetting in thin capillaries is predicted and analyzed. This effect takes place in very thin capillaries, when the receding contact angle decreases to zero.

15.
J Pharm Sci ; 104(12): 4109-4116, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26343548

RESUMO

The spreadability of a liquid drug formulation on skin is an indication of it either remaining stationary or distributing (spreading) as a droplet. Factors determining droplet spreadability of the formulation are spreading area, diameter of the droplet base, viscosity of the liquid, contact angle, volume of droplet on skin and any others. The creation of microcavities from the application of microneedle (MN) has the potential to control droplet spreading, and hence, target specific areas of skin for drug delivery. However, there is little work that demonstrates spreading of liquid drug formulation on MN-treated skin. Below, spreading of a lidocaine hydrogel formulation and lidocaine solution (reference liquid) on porcine skin is investigated over MN-treated skin. Controlled spreadability was achieved with the lidocaine hydrogel on MN-treated skin as compared with lidocaine solution. It was observed that the droplet spreading parameters such as spreading radius, droplet height and dynamic contact angle were slightly lower for the lidocaine hydrogel than the lidocaine solution on skin. Also, the lidocaine hydrogel on MN-treated skin resulted in slower dynamic reduction of droplet height, contact angle and reduced time taken in attaining static advancing droplets because of the MN microcavities.


Assuntos
Lidocaína/administração & dosagem , Pele/metabolismo , Administração Cutânea , Animais , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Microinjeções/métodos , Agulhas , Absorção Cutânea , Soluções/administração & dosagem , Suínos , Viscosidade
16.
J Colloid Interface Sci ; 446: 218-25, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25678156

RESUMO

HYPOTHESIS: The process of dried blood spot sampling involves simultaneous spreading and penetration of blood into a porous filter paper with subsequent evaporation and drying. Spreading of small drops of blood, which is a non-Newtonian liquid, over a dry porous layer is investigated from both theoretical and experimental points of view. EXPERIMENTS AND THEORY: A system of two differential equations is derived, which describes the time evolution of radii of both the drop base and the wetted region inside the porous medium. The system of equations does not include any fitting parameters. The predicted time evolutions of both radii are compared with experimental data published earlier. FINDINGS: For a given power law dependency of viscosity of blood with different hematocrit level, radii of both drop base and wetted region, and contact angle fell on three universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and the wetted region inside the porous layer and dynamic contact angle on dimensionless time. The predicted theoretical relationships are three universal curves accounting satisfactorily for the experimental data.


Assuntos
Fenômenos Biofísicos , Sangue , Hidrodinâmica , Modelos Teóricos , Papel , Humanos , Porosidade , Reologia , Molhabilidade
17.
Adv Colloid Interface Sci ; 222: 670-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25455806

RESUMO

Foams cannot be generated without the use of special foaming agents, as pure liquids do not foam. The most common foaming agents are surfactants, however often for foam stability one active agent is not enough, it is necessary to add other component to increase foam lifetime. Foams on everyday use are mostly made from mixture of different components. Properly chosen combinations of two active ingredients lead to a faster foam formation and increased foam stability. During the last decade polymers (mainly polyelectrolytes and proteins) have become frequently used additives to foaming solutions. Mixtures of surfactants and polymers often demonstrate different foaming properties in comparison to surfactant only or polymer only solutions. The nature of surfactant-polymer interactions is complicated and prediction of resulting foaming properties of such formulations is not straightforward. Properties and foaming of surfactant-polymer mixtures are discussed as well as current applications of foams and foaming agents as foams are widely used in cosmetics, pharmaceutics, medicine and the food industry.


Assuntos
Polímeros/química , Tensoativos/química , Adsorção , Cosméticos/química , Soluções
18.
Soft Matter ; 10(32): 6024-37, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24998938

RESUMO

The equilibrium profile of a capillary meniscus formed under combined action of disjoining/conjoining and capillarity pressures is investigated. Attention is focused on the shape of a transition zone between a spherical meniscus and a thin liquid film in front of the meniscus. The Poisson-Boltzmann equation is used for calculations of electrostatic contribution to the disjoining/conjoining pressure and the liquid shape inside the transition zone. Both complete and partial wetting conditions are investigated.

19.
Adv Colloid Interface Sci ; 206: 1-4, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24765673
20.
Adv Colloid Interface Sci ; 206: 303-19, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24200090

RESUMO

We review the dynamics of particle laden interfaces, both particle monolayers and particle+surfactant monolayers. We also discuss the use of the Brownian motion of microparticles trapped at fluid interfaces for measuring the shear rheology of surfactant and polymer monolayers. We describe the basic concepts of interfacial rheology and the different experimental methods for measuring both dilational and shear surface complex moduli over a broad range of frequencies, with emphasis in the micro-rheology methods. In the case of particles trapped at interfaces the calculation of the diffusion coefficient from the Brownian trajectories of the particles is calculated as a function of particle surface concentration. We describe in detail the calculation in the case of subdiffusive particle dynamics. A comprehensive review of dilational and shear rheology of particle monolayers and particle+surfactant monolayers is presented. Finally the advantages and current open problems of the use of the Brownian motion of microparticles for calculating the shear complex modulus of monolayers are described in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...