Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Comput Sci ; 1: 421-432, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34993494

RESUMO

Detecting genetic variants associated with traits (quantitative trait loci, QTL) requires genotyped study individuals. Here we describe BaseQTL, a Bayesian method that exploits allele-specific expression to map molecular QTL from sequencing reads (eQTL for gene expression) even when no genotypes are available. When used with genotypes to map eQTL, BaseQTL has lower error rates and increased power compared with existing QTL mapping methods. Running without genotypes limits how many tests can be performed, but due to the proximity of QTL variants to gene bodies, the 2.8% of variants within a 100 kB window that could be tested contained 26% of eQTL detectable with genotypes. eQTL effect estimates were invariably consistent between analyses performed with and without genotypes. Often, sequencing data may be generated in the absence of genotypes on patients and controls in differential expression studies, and we identified an apparent psoriasis-specific eQTL for GSTP1 in one such dataset, providing new insights into disease-dependent gene regulation.

2.
Pharm Stat ; 15(4): 333-40, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26932771

RESUMO

In Phase II oncology trials, therapies are increasingly being evaluated for their effectiveness in specific populations of interest. Such targeted trials require designs that allow for stratification based on the participants' molecular characterisation. A targeted design proposed by Jones and Holmgren (JH) Jones CL, Holmgren E: 'An adaptive Simon two-stage design for phase 2 studies of targeted therapies', Contemporary Clinical Trials 28 (2007) 654-661.determines whether a drug only has activity in a disease sub-population or in the wider disease population. Their adaptive design uses results from a single interim analysis to decide whether to enrich the study population with a subgroup or not; it is based on two parallel Simon two-stage designs. We study the JH design in detail and extend it by providing a few alternative ways to control the familywise error rate, in the weak sense as well as the strong sense. We also introduce a novel optimal design by minimising the expected sample size. Our extended design contributes to the much needed framework for conducting Phase II trials in stratified medicine. © 2016 The Authors Pharmaceutical Statistics Published by John Wiley & Sons Ltd.


Assuntos
Ensaios Clínicos Fase II como Assunto/normas , Sistemas de Liberação de Medicamentos/normas , Projetos de Pesquisa/normas , Ensaios Clínicos Fase II como Assunto/métodos , Sistemas de Liberação de Medicamentos/métodos , Humanos
3.
Stat Appl Genet Mol Biol ; 15(1): 83-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26910751

RESUMO

The integration of multi-dimensional datasets remains a key challenge in systems biology and genomic medicine. Modern high-throughput technologies generate a broad array of different data types, providing distinct--but often complementary--information. However, the large amount of data adds burden to any inference task. Flexible Bayesian methods may reduce the necessity for strong modelling assumptions, but can also increase the computational burden. We present an improved implementation of a Bayesian correlated clustering algorithm, that permits integrated clustering to be routinely performed across multiple datasets, each with tens of thousands of items. By exploiting GPU based computation, we are able to improve runtime performance of the algorithm by almost four orders of magnitude. This permits analysis across genomic-scale data sets, greatly expanding the range of applications over those originally possible. MDI is available here: http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , Algoritmos , Análise por Conglomerados , Cadeias de Markov , Método de Monte Carlo , Software , Biologia de Sistemas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...