Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Risk Anal ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37953395

RESUMO

The smoke produced by wildfires can travel great distances and lead to respiratory and/or cardiovascular health impacts through inhalation. Individuals can reduce exposure by implementing smoke mitigation measures in their homes and beyond. In this article, we examine household level survey data (n = 543) on wildfire smoke mitigation in response to the September 2020 wildfires that occurred in the state of Oregon (and beyond). The air quality was hazardous for about 10 days in many affected regions. This study assessed the implementation of six commonly referenced approaches to reducing exposure to smoke: staying indoors; keeping doors and windows closed, turning on HVAC; using air purifiers; replacing air filters, and wearing face masks. We found high levels of implementation of staying indoors and keeping doors and windows closed; however, statistical analysis of socioeconomic demographics suggests that respondents vary in the implementation of the other measures. Income, number of exposure days, and access to information on smoke mitigation were positively associated with the implementation. Given the importance of information access for implementation for three of the measures, we also present data on how different age groups prefer to be contacted about air quality and smoke mitigation. For example, participants above 65 years of age prefer local TV as opposed to social media, whereas text messages were favored by all age groups. These survey results will help to inform the design of campaigns to engage community members differentially and potentially affect best communication practices and other assistance/preparation for smoke mitigation across demographics.

2.
Build Environ ; 2342023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37065504

RESUMO

Vegetation plays an important role in biosphere-atmosphere exchange, including emission of biogenic volatile organic compounds (BVOCs) that influence the formation of secondary pollutants. Gaps exist in our knowledge of BVOC emissions from succulent plants, which are often selected for urban greening on building roofs and walls. In this study, we characterize the CO2 uptake and BVOC emission of eight succulents and one moss using proton transfer reaction - time of flight - mass spectrometry in controlled laboratory experiments. CO2 uptake ranged 0 to 0.16 µmol [g DW (leaf dry weight)]-1 s-1 and net BVOC emission ranges -0.10 to 3.11 µg [g DW]-1 h-1. Specific BVOCs emitted or removed varied across plants studied; methanol was the dominant BVOC emitted, and acetaldehyde had the largest removal. Isoprene and monoterpene emissions of studied plants were generally low compared to other urban trees and shrubs, ranging 0 to 0.092 µg [g DW]-1 h-1 and 0 to 0.44 µg [g DW]-1 h-1, respectively. Calculated ozone formation potentials (OFP) of the succulents and moss range 4×10-7 - 4×10-4 g O3 [g DW]-1 d-1. Results of this study can inform selection of plants used in urban greening. For example, on a per leaf mass basis, Phedimus takesimensis and Crassula ovata have OFP lower than many plants presently classified as low OFP and may be promising candidates for greening in urban areas with ozone exceedances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...