Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 11: 1249968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780984

RESUMO

Introduction: Dilutely doped ferroelectric materials are of interest, as engineering these materials by introducing point defects via doping often leads to unique behavior not otherwise achievable in the undoped material. For example, B-site doping with transition metals in barium titanate (BaTiO3, or BTO) creates defect dipoles via oxygen vacancies leading enhanced polarization, strain, and the ability to tune dielectric properties. Though defect dipoles should lead to dielectric property enhancements, the effect of grain size in polycrystalline ferroelectrics such as BTO plays a significant role in those properties as well. Methods: Herein, doped BTO with 1.0% copper (Cu), iron (Fe), or cobalt (Co) was synthesized using traditional solid-state processing to observe the contribution of both defect-dipole formation and grain size on the ferroelectric and dielectric properties. Results and discussion: 1.0% Cu doped BTO showed the highest polarization and strain (9.3 µC/cm2 and 0.1%, respectively) of the three doped BTO samples. While some results, such as the aforementioned electrical properties of the 1.0% Cu doped BTO can be explained by the strong chemical driving force of the Cu atoms to form defect dipoles with oxygen vacancies and copper's consistent +2 valency leading to stable defect-dipole formation (versus the readily mixed valency states of Fe and Co at +2/+3), other properties cannot. For instance, all three Tc values should fall below that of undoped BTO (typically 120°C-135°C), but the Tc of 1.0% Cu BTO actually exceeds that range (139.4°C). Data presented on the average grain size and distribution of grain sizes provides insight allowing us to decouple the effect of defect dipoles and the effect of grain size on properties such as Tc, where the 1.0% Cu BTO was shown to possess the largest overall grains, leading to its increase in Tc. Conclusion/future work: Overall, the 1% Cu BTO possessed the highest polarization, strain, and Tc and is a promising dopant for engineering the performance of the material. This work emphasizes the challenge of extricating one effect (such as defect-dipole formation) from another (grain size modification) inherent to doping polycrystalline BTO.

2.
ACS Appl Mater Interfaces ; 14(22): 25701-25709, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608249

RESUMO

Magnetoelectric materials present a unique opportunity for electric field-controlled magnetism. Even though strain-mediated multiferroic heterostructures have shown unprecedented increase in magnetoelectric coupling compared to single-phase materials, further improvements must be made before ultra-low power memory, logic, magnetic sensors, and wide spectrum antennas can be realized. This work presents how magnetoelectric coupling can be enhanced by simultaneously exploiting multiple strain engineering approaches in heterostructures composed of Fe0.5Co0.5/Ag multilayers on (011) Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric crystals. When grown and measured under strain, these heterostructures exhibit an effective converse magnetoelectric coefficient in the order of 10-5 s m-1: the highest directly measured, non-resonant value to-date. This response occurred at room temperature and at low electric fields (<2 kV cm-1). This large effect is enabled by magnetization reorientation caused by changing the magnetic anisotropy with strain from the substrate and the use of multilayered magnetic materials to minimize the internal stress from deposition. Additionally, the coercive field dependence of the magnetoelectric response under strain suggests contributions from domain-mediated magnetization switching modified by voltage-induced magnetoelastic anisotropy. This work highlights how multicomponent strain engineering enables enhanced magnetoelectric coupling in heterostructures and provides an approach to realize energy-efficient magnetoelectric applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...