Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Vet Res ; 68(2): 313-324, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947149

RESUMO

Introduction: In dairy cattle, oxidative stress is a predominant problem associated with diseases and reproductive health issues. This study aimed to detect the variation in the antioxidant biomarkers by adding different concentrations of ß-hydroxybutyric acid (BHBA) and sought to elucidate its effects on the gene expression levels of growth hormone (GH) and antioxidant biomarkers in bovine hepatocytes. Material and Methods: Four antioxidant biomarkers, namely malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH Px) were evaluated using commercially available bovine ELISA kits. The expression levels of the bovine GH, its receptor (GHR), insulin-like growth factor (IGF), IGF-1, IGF-1 receptor, CAT, SOD, GSH-Px and ß-actin (as a reference) genes in liver cell culture were determined by reverse transcriptase-PCR assay. Results: With the increase of BHBA concentration and culture time, the activities of SOD, CAT, and GSH Px biomarkers in hepatocytes decreased. However, the content of MDA in hepatocytes increased gradually with the increase of hepatocyte culture time and BHBA concentration. The qPCR results revealed that after adding BHBA, gene expression levels of GSH-Px, SOD and IGF biomarkers in hepatocytes began to differ in the culture groups at 12 h, whereas the gene expression level of the CAT and GHR biomarkers in hepatocytes began to differ at 6 h. Conclusion: Quantitative PCR results showed that the BHBA significantly downregulated the expression levels of the GHR gene and CAT, GSH Px and SOD antioxidant biomarker genes.

2.
Clin Nutr ; 43(6): 1488-1494, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718720

RESUMO

BACKGROUND & AIMS: Leukocyte telomere length (LTL) is a biomarker of aging that may be influenced by dietary factors. Omega-3 fatty acids (n-3 FA) have been suggested to affect LTL. However, research on this effect has been inconclusive. The aim of the study was to test the hypothesis about the positive effect of n-3 FA on LTL. METHODS: Fat-1 transgenic mice, which can convert omega-6 fatty acids (n-6 FA) to n-3 FA and have elevated levels of endogenous n-3 FA in their tissues, were used to study the effects of n-3 FA on LTL at different ages. Blood samples from 10-month-old wild-type (WT) mice (n = 10) and fat-1 mice (n = 10) and 3-month-old WT mice (n = 5) and fat-1 mice (n = 5) were used to measure relative and absolute LTL. The levels of proteins critical for telomere maintenance were examined by Western blot analysis. RESULTS: Fat-1 transgenic mice had longer leukocyte telomeres than their WT siblings, suggesting a slower rate of age-related telomere shortening in fat-1 mice. In animals aged 10 months, the LTL was significantly longer in fat-1 than in WT mice (mean ± SEM; relative LTL: WT = 1.00 ± 0.09 vs. fat-1: 1.25 ± 0.05, P = 0.031; absolute LTL: WT = 64.41 ± 6.50 vs. fat-1: 78.53 ± 3.86, P = 0.048). The difference in LTL observed in three-month-old mice was insignificant, however the mean LTL was still longer in fat-1 mice than in the WT mice. Fat-1 mice also had abundant levels of two shelterin proteins: TRF1 (27%, P = 0.028) and TRF2 (47%, P = 0.040) (telomeric repeat binding factor 1 and 2) compared to WT animals. CONCLUSION: This study, for the first time in a unique animal model free of dietary confounders, has demonstrated that increased levels of n-3 FA in tissues can reduce telomere attrition. The data presented indicate the possibility of using omega-3 fatty acids to reduce accelerated telomere attrition and, consequently, counteract premature aging and reduce the risk of age-related diseases.


Assuntos
Envelhecimento , Ácidos Graxos Ômega-3 , Camundongos Transgênicos , Telômero , Animais , Camundongos , Leucócitos/metabolismo , Masculino , Encurtamento do Telômero , Ácidos Graxos Ômega-6 , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Camundongos Endogâmicos C57BL , Feminino , Caderinas , Proteínas de Caenorhabditis elegans
3.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612915

RESUMO

In pigs, iron deficiency anemia (IDA) is a common disorder that occurs during the early postnatal period, leading to the stunted growth and increased mortality of piglets. The main cause of IDA is low iron stores in the liver of newborn piglets; these stores constitute the main source of iron needed to satisfy the erythropoietic requirements of the piglets in their first weeks of life. Insufficient iron stores in piglets are usually due to the inadequate placental iron transfer from the sow to the fetuses. Therefore, iron supplementation in pregnant sows has been implemented to enhance placental iron transfer and increase iron accumulation in the liver of the fetuses. Over the years, several oral and parenteral approaches have been attempted to supplement sows with various iron preparations, and consequently, to improve piglets' red blood cell indices. However, there is debate with regard to the effectiveness of iron supplementation in pregnant sows for preventing IDA in newborn piglets. Importantly, this procedure should be carried out with caution to avoid iron over-supplementation, which can lead to iron toxicity. This article aims to critically review and evaluate the use of iron supplementation in pregnant sows as a procedure for preventing IDA in piglets.


Assuntos
Anemia Ferropriva , Feminino , Gravidez , Animais , Suínos , Anemia Ferropriva/prevenção & controle , Anemia Ferropriva/veterinária , Ferro , Placenta , Fígado , Suplementos Nutricionais
4.
BMC Vet Res ; 20(1): 64, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38389107

RESUMO

BACKGROUND: The critically low hepatic iron stores of newborn piglets are considered to be a major cause of neonatal iron deficiency in modern breeds of domestic pig (Sus domestica). The main factor believed to contribute to this phenomenon is large litter size, which has been an objective of selective breeding of pigs for decades. As consequence, iron transferred from the pregnant sow has to be distributed among a greater number of fetuses. RESULTS: Here, we investigated whether litter size influences red blood cell (RBC) indices and iron parameters in Polish Large White (PLW) piglets and gilts. Small and large litters were produced by the transfer of different numbers of embryos, derived from the same superovulated donor females, to recipient gilts. Piglets from large litters obtained following routine artificial insemination were also examined. Our results clearly demonstrated that varying the number of piglets in a litter did not affect the RBC and iron status of 1-day-old piglets, with all showing iron deficiency anemia. In contrast, gilts with small litters displayed higher RBC and iron parameters compared to mothers with large litters. A comparative analysis of the RBC status of wild boars (having less than half as many piglets per litter as domestic pigs) and PLW pigs, demonstrated higher RBC count, hemoglobin level and hematocrit value of both wild boar sows and piglets, even compared to small-litter PLW animals. CONCLUSIONS: These findings provide evidence that RBC and iron status in newborn PLW piglets are not primarily determined by litter size, and indicate the need to study the efficiency of iron transport across the placenta in domestic pig and wild boar females.


Assuntos
Ferro , Sus scrofa , Gravidez , Suínos , Animais , Feminino , Tamanho da Ninhada de Vivíparos , Animais Recém-Nascidos , Placenta
5.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232742

RESUMO

Kidneys play an especial role in copper redistribution in the organism. The epithelial cells of proximal tubules perform the functions of both copper uptake from the primary urine and release to the blood. These cells are equipped on their apical and basal membrane with copper transporters CTR1 and ATP7A. Mosaic mutant mice displaying a functional dysfunction of ATP7A are an established model of Menkes disease. These mice exhibit systemic copper deficiency despite renal copper overload, enhanced by copper therapy, which is indispensable for their life span extension. The aim of this study was to analyze the expression of Slc31a1 and Slc31a2 genes (encoding CTR1/CTR2 proteins) and the cellular localization of the CTR1 protein in suckling, young and adult mosaic mutants. Our results indicate that in the kidney of both intact and copper-injected 14-day-old mutants showing high renal copper content, CTR1 mRNA level is not up-regulated compared to wild-type mice given a copper injection. The expression of the Slc31a1 gene in 45-day-old mice is even reduced compared with intact wild-type animals. In suckling and young copper-injected mutants, the CTR1 protein is relocalized from the apical membrane to the cytoplasm of epithelial cells of proximal tubules, the process which prevents copper transport from the primary urine and, thus, protects cells against copper toxicity.


Assuntos
Transportador de Cobre 1 , Cobre , Células Epiteliais , Túbulos Renais Proximais , Síndrome dos Cabelos Torcidos , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Cobre/metabolismo , Cobre/toxicidade , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Expressão Gênica , Túbulos Renais Proximais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Síndrome dos Cabelos Torcidos/etiologia , Síndrome dos Cabelos Torcidos/genética , Síndrome dos Cabelos Torcidos/metabolismo , Camundongos , Transporte Proteico/genética , Transporte Proteico/fisiologia , RNA Mensageiro/metabolismo , Proteínas SLC31/genética , Proteínas SLC31/metabolismo
6.
Nutrients ; 14(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36145097

RESUMO

Telomeres are complexes consisting of tandem repeat DNA combined with associated proteins that play a key role in protecting the ends of chromosomes and maintaining genome stability. They are considered a biological clock, as they shorten in parallel with aging. Furthermore, short telomeres are associated with several age-related diseases. However, the variability in telomere shortening independent of chronological age suggests that it is a modifiable factor. In fact, it is regulated inter alia by genetic damage, cell division, aging, oxidative stress, and inflammation. A key question remains: how can we prevent accelerated telomere attrition and subsequent premature replicative senescence? A number of studies have explored the possible impact of omega-3 fatty acids on telomere shortening. This review summarizes published cross-sectional studies, randomized controlled trials, and rodent studies investigating the role of omega-3 fatty acids in telomere biology. It also covers a broad overview of the mechanism, currently favored in the field, that explains the impact of omega-3 fatty acids on telomeres-the food compound's ability to modulate oxidative stress and inflammation. Although the results of the studies performed to date are not consistent, the vast majority indicate a beneficial effect of omega-3 fatty acids on telomere length.


Assuntos
Ácidos Graxos Ômega-3 , Telômero , Animais , Senescência Celular , Estudos Transversais , Ácidos Graxos Ômega-3/farmacologia , Humanos , Inflamação , Ratos , Encurtamento do Telômero
7.
Crit Rev Food Sci Nutr ; 62(11): 3002-3022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33355004

RESUMO

Iron is an essential micronutrient for almost all living organisms. It plays an important role in DNA, RNA, and protein synthesis and takes part in electron transport, cellular respiration, cell proliferation and differentiation, and gene expression regulation. However, there is a fine line between excessive and insufficient body iron content. Iron overload is biochemically dangerous. It causes serious toxicities and generates reactive oxygen species via the Fenton reaction, leading to damage to cellular membranes, proteins, and DNA. Omega-3 fatty acids play an essential role in many physiological processes, including energy metabolism and signal transduction, as well as acting as structural components of cell membranes. Omega-3 fatty acids also help to maintain homeostasis and combat diseases. Recent studies using model organisms as well as clinical studies have revealed a link between omega-3 fatty acids and iron metabolism. Moreover, various iron-related disorders are significantly affected by omega-3 fatty acids. There is a clear relationship between iron and omega-3 fatty acid metabolisms; however, the underlying mechanisms are unknown. Therefore, in-depth research is needed to determine the exact nature of the metabolic interactions of these nutrients. Here, we focus on iron and omega-3 fatty acid metabolisms at their crossroads in the liver and brain.


Assuntos
Ácidos Graxos Ômega-3 , Sobrecarga de Ferro , Ácidos Graxos Ômega-3/metabolismo , Homeostase , Humanos , Ferro/metabolismo , Fígado/metabolismo
8.
Genes (Basel) ; 12(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34573364

RESUMO

Iron is an essential nutrient during all stages of mammalian development. Studies carried out over the last 20 years have provided important insights into cellular and systemic iron metabolism in adult organisms and led to the deciphering of many molecular details of its regulation. However, our knowledge of iron handling in prenatal development has remained remarkably under-appreciated, even though it is critical for the health of both the embryo/fetus and its mother, and has a far-reaching impact in postnatal life. Prenatal development requires a continuous, albeit quantitatively matched with the stage of development, supply of iron to support rapid cell division during embryogenesis in order to meet iron needs for erythropoiesis and to build up hepatic iron stores, (which are the major source of this microelement for the neonate). Here, we provide a concise overview of current knowledge of the role of iron metabolism-related genes in the maintenance of iron homeostasis in pre- and post-implantation development based on studies on transgenic (mainly knock-out) mouse models. Most studies on mice with globally deleted genes do not conclude whether underlying in utero iron disorders or lethality is due to defective placental iron transport or iron misregulation in the embryo/fetus proper (or due to both). Therefore, there is a need of animal models with tissue specific targeted deletion of genes to advance the understanding of prenatal iron metabolism.


Assuntos
Desenvolvimento Embrionário/genética , Ferro/metabolismo , Proteínas/genética , Proteínas/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Heme , Camundongos Transgênicos , Gravidez
9.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576090

RESUMO

Iron deficiency is the most common mammalian nutritional disorder. However, among mammalian species iron deficiency anemia (IDA), occurs regularly only in pigs. To cure IDA, piglets are routinely injected with high amounts of iron dextran (FeDex), which can lead to perturbations in iron homeostasis. Here, we evaluate the therapeutic efficacy of non-invasive supplementation with Sucrosomial iron (SI), a highly bioavailable iron supplement preventing IDA in humans and mice and various iron oxide nanoparticles (IONPs). Analysis of red blood cell indices and plasma iron parameters shows that not all iron preparations used in the study efficiently counteracted IDA comparable to FeDex-based supplementation. We found no signs of iron toxicity of any tested iron compounds, as evaluated based on the measurement of several toxicological markers that could indicate the occurrence of oxidative stress or inflammation. Neither SI nor IONPs increased hepcidin expression with alterations in ferroportin (FPN) protein level. Finally, the analysis of the piglet gut microbiota indicates the individual pattern of bacterial diversity across taxonomic levels, independent of the type of supplementation. In light of our results, SI but not IONPs used in the experiment emerges as a promising nutritional iron supplement, with a high potential to correct IDA in piglets.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Suplementos Nutricionais , Compostos Férricos/administração & dosagem , Compostos Férricos/uso terapêutico , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Nanopartículas Magnéticas de Óxido de Ferro/química , Administração Oral , Anemia Ferropriva/sangue , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Duodeno/metabolismo , Compostos Férricos/farmacologia , Compostos Ferrosos/uso terapêutico , Hepcidinas/sangue , Hepcidinas/genética , Masculino , Microbiota , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos
10.
Cells ; 10(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34571908

RESUMO

The critical function of ferroportin (Fpn) in maintaining iron homeostasis requires complex and multilevel control of its expression. Besides iron-dependent cellular and systemic control of Fpn expression, other metals also seem to be involved in regulating the Fpn gene. Here, we found that copper loading significantly enhanced Fpn transcription in an Nrf2-dependent manner in primary bone-marrow-derived macrophages (BMDMs). However, prolonged copper loading resulted in decreased Fpn protein abundance. Moreover, CuCl2 treatment induced Fpn expression in RAW 264.7 macrophages at both the mRNA and protein level. These data suggest that cell-type-specific regulations have an impact on Fpn protein stability after copper loading. Transcriptional suppression of Fpn after lipopolysaccharide (LPS) treatment contributes to increased iron storage inside macrophages and may result in anemia of inflammation. Here, we observed that in both primary BMDMs and RAW 264.7 macrophages, LPS treatment significantly decreased Fpn mRNA levels, but concomitant CuCl2 stimulation counteracted the transcriptional suppression of Fpn and restored its expression to the control level. Overall, we show that copper loading significantly enhances Fpn transcription in macrophages, while Fpn protein abundance in response to CuCl2 treatment, depending on macrophage type and factors specific to the macrophage population, can influence Fpn regulation in response to copper loading.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase , Ferro/metabolismo , Macrófagos/efeitos dos fármacos , Animais , Proteínas de Transporte de Cátions/genética , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos
11.
Diagnostics (Basel) ; 11(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34359361

RESUMO

Hereditary hemochromatosis (HH) is a genetic disease leading to excessive iron absorption, its accumulation, and oxidative stress induction causing different organ damage, including the heart. The process of cardiac involvement is slow and lasts for years. Cardiac pathology manifests as an impaired diastolic function and cardiac hypertrophy at first and as dilatative cardiomyopathy and heart failure with time. From the moment of heart failure appearance, the prognosis is poor. Therefore, it is crucial to prevent those lesions by upfront therapy at the preclinical phase of the disease. The most useful diagnostic tool for detecting cardiac involvement is echocardiography. However, during an early phase of the disease, when patients do not present severe abnormalities in serum iron parameters and severe symptoms of other organ involvement, heart damage may be overlooked due to the lack of evident signs of cardiac dysfunction. Considerable advancement in echocardiography, with particular attention to speckle tracking echocardiography, allows detecting discrete myocardial abnormalities and planning strategy for further clinical management before the occurrence of substantial heart damage. The review aims to present the current state of knowledge concerning cardiac involvement in HH. In addition, it could help cardiologists and other physicians in their everyday practice with HH patients.

12.
Am J Hematol ; 96(6): 659-670, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33684239

RESUMO

The demand for iron is high in pregnancy to meet the increased requirements for erythropoiesis. Even pregnant females with initially iron-replete stores develop iron-deficiency anemia, due to inadequate iron absorption. In anemic females, the maternal iron supply is dedicated to maintaining iron metabolism in the fetus and placenta. Here, using a mouse model of iron deficiency in pregnancy, we show that iron recycled from senescent erythrocytes becomes a predominant source of this microelement that can be transferred to the placenta in females with depleted iron stores. Ferroportin is a key protein in the molecular machinery of cellular iron egress. We demonstrate that under iron deficiency in pregnancy, levels of ferroportin are greatly reduced in the duodenum, placenta and fetal liver, but not in maternal liver macrophages and in the spleen. Although low expression of both maternal and fetal hepcidin predicted ferroportin up-regulation in examined locations, its final expression level was very likely correlated with tissue iron status. Our results argue that iron released into the circulation of anemic females is taken up by the placenta, as evidenced by high expression of iron importers on syncytiotrophoblasts. Then, a substantial decrease in levels of ferroportin on the basolateral side of syncytiotrophoblasts, may be responsible for the reduced transfer of iron to the fetus. As attested by the lowest decrease in iron content among analyzed tissues, some part is retained in the placenta. These findings confirm the key role played by ferroportin in tuning iron turnover in iron-deficient pregnant mouse females and their fetuses.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Deficiências de Ferro , Ferro da Dieta/administração & dosagem , Fígado/metabolismo , Complicações na Gravidez/metabolismo , Baço/metabolismo , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Transporte de Cátions/genética , Citocinas/sangue , Duodeno/metabolismo , Envelhecimento Eritrocítico , Índices de Eritrócitos , Feminino , Feto/metabolismo , Hemoglobinas/metabolismo , Hepcidinas/biossíntese , Hepcidinas/genética , Ferro/metabolismo , Fígado/embriologia , Macrófagos/metabolismo , Troca Materno-Fetal , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Proteínas Musculares/sangue , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos , Fagocitose , Placenta/metabolismo , Gravidez , Regulação para Cima
13.
Vet Pathol ; 58(3): 472-482, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33461443

RESUMO

Equine sarcoid is the most common skin tumor of horses. Clinically, it occurs as a locally invasive, fibroblastic, wart-like lesion of equine skin, which has 6 clinical classes: occult, verrucose, nodular, fibroblastic, mixed, and malignant. Sarcoids may be single but multiple lesions are more frequent. The typical histological feature is increased density of dermal fibroblasts which form interlacing bundles and whorls within the dermis. Lesions are mostly persistent, resist therapy, and tend to recur following treatment. In general, sarcoids are not fatal but their location, size, and progression to the more aggressive form may lead to the withdrawal of a horse from use and serious infringement of their welfare leading to the loss of valuable animals. Bovine papillomavirus (BPV) type 1 and less commonly type 2 contribute to the development of equine sarcoid. The viral genome and proteins are detected in a high percentage of cases. Furthermore, viral oncoprotein activity leads to changes in the fibroblastic tissue similar to changes seen in other types of tumors. Equine sarcoids are characterized by a loss of tumor suppressor activity and changes allowing abnormal formation of the affected tissue, as well as y immune defense abnormalities that weaken the host's immune response. This impaired immune response to BPV infection appears to be crucial for the development of lesions that do not spontaneously regress, as occurs in BPV-infected cows.


Assuntos
Papillomavirus Bovino 1 , Doenças dos Bovinos , Doenças dos Cavalos , Infecções por Papillomavirus , Animais , Papillomavirus Bovino 1/genética , Bovinos , DNA Viral , Cavalos , Recidiva Local de Neoplasia/veterinária , Infecções por Papillomavirus/veterinária
14.
Reproduction ; 161(1): 61-72, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112292

RESUMO

Preimplantation embryos are particularly vulnerable to environmental perturbations, including those related to assisted reproductive technologies. Invasive embryo manipulations, such as blastomere biopsy, are applied worldwide in clinical settings for preimplantation genetic testing. Mouse models have previously shown that blastomere biopsy may be associated with altered phenotypes in adult offspring. The aim of the present study was to investigate the specific contribution of blastomere removal to the physiological, behavioral, and molecular regulators of energy homeostasis, as compared to sham manipulation (re-introducing the blastomere into the embryo after its removal) and in vitro culture. Mice derived from 8-cell embryos subjected to blastomere removal displayed: (i) higher body weight and adiposity, (ii) increased food intake and sucrose preference, (iii) decreased time of immobility in the tail suspension test, and (iv) resistance to weight loss after social isolation or following 3 days of physical exercise - compared to mice derived from sham biopsy or from in vitro-cultured embryos. Mice generated after blastomere removal also had increased circulating leptin and leptin gene expression in adipose tissue, as well as increased ghrelin receptor gene expression in the hypothalamus, compared to control mice. The effects of blastomere biopsy on offspring phenotype were sexually dimorphic, with females not being affected. These results indicate that blastomere deprivation, rather than other perturbations of the blastomere biopsy procedure, programs male embryos to develop physiological, behavioral, and molecular dysregulation of energy homeostasis, leading to postnatal obesity.


Assuntos
Blastômeros , Desenvolvimento Embrionário , Obesidade/etiologia , Diagnóstico Pré-Implantação/efeitos adversos , Animais , Biópsia , Feminino , Homeostase , Masculino , Camundongos , Gravidez
15.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260507

RESUMO

Owing to its redox properties, copper is a cofactor of enzymes that catalyze reactions in fundamental metabolic processes. However, copper-oxygen interaction, which is a source of toxic oxygen radicals generated by the Fenton reaction, makes copper a doubled-edged-sword in an oxygen environment. Among the microelements influencing male fertility, copper plays a special role because both copper deficiency and overload in the gonads worsen spermatozoa quality and disturb reproductive function in mammals. Male gametes are produced during spermatogenesis, a multi-step process that consumes large amounts of oxygen. Germ cells containing a high amount of unsaturated fatty acids in their membranes are particularly vulnerable to excess copper-mediated oxidative stress. In addition, an appropriate copper level is necessary to initiate meiosis in premeiotic germ cells. The balance between essential and toxic copper concentrations in germ cells at different stages of spermatogenesis and in Sertoli cells that support their development is handled by a network of copper importers, chaperones, recipient proteins, and exporters. Here, we describe coordinated regulation/functioning of copper-binding proteins expressed in germ and Sertoli cells with special emphasis on copper transporters, copper transporting ATPases, and SOD1, a copper-dependent antioxidant enzyme. These and other proteins assure copper bioavailability in germ cells and protection against copper toxicity.


Assuntos
Cobre/metabolismo , Gônadas/metabolismo , Homeostase , Espermatogênese , Animais , Transporte Biológico , Células Germinativas/citologia , Células Germinativas/metabolismo , Humanos , Masculino
16.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092142

RESUMO

In most mammals, neonatal intravascular hemolysis is a benign and moderate disorder that usually does not lead to anemia. During the neonatal period, kidneys play a key role in detoxification and recirculation of iron species released from red blood cells (RBC) and filtered out by glomeruli to the primary urine. Activity of heme oxygenase 1 (HO1), a heme-degrading enzyme localized in epithelial cells of proximal tubules, seems to be of critical importance for both processes. We show that, in HO1 knockout mouse newborns, hemolysis was prolonged despite a transient state and exacerbated, which led to temporal deterioration of RBC status. In neonates lacking HO1, functioning of renal molecular machinery responsible for iron reabsorption from the primary urine (megalin/cubilin complex) and its transfer to the blood (ferroportin) was either shifted in time or impaired, respectively. Those abnormalities resulted in iron loss from the body (excreted in urine) and in iron retention in the renal epithelium. We postulate that, as a consequence of these abnormalities, a tight systemic iron balance of HO1 knockout neonates may be temporarily affected.


Assuntos
Heme Oxigenase-1/deficiência , Hemólise , Ferro/metabolismo , Rim/metabolismo , Insuficiência Renal/metabolismo , Anemia/sangue , Anemia/terapia , Animais , Animais Recém-Nascidos , Contagem de Eritrócitos , Feminino , Heme/metabolismo , Heme Oxigenase-1/genética , Ferro/urina , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Insuficiência Renal/genética , Insuficiência Renal/terapia
17.
Animals (Basel) ; 10(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610535

RESUMO

BACKGROUND: The similarities between swine and humans in physiological and genomic patterns, as well as significant correlation in size and anatomy, make pigs an useful animal model in nutritional studies during pregnancy. In humans and pigs iron needs exponentially increase during the last trimester of pregnancy, mainly due to increased red blood cell mass. Insufficient iron supply during gestation may be responsible for the occurrence of maternal iron deficiency anemia and decreased iron status in neonates. On the other hand, preventive iron supplementation of non-anemic mothers may be of potential risk due to iron toxicity. Several different regimens of iron supplementation have been applied during pregnancy. The majority of oral iron supplementations routinely applied to pregnant sows provide inorganic, non-heme iron compounds, which exhibit low bioavailability and intestinal side effects. The aim of this study was to check, using pig as an animal model, the effect of sucrosomial ferric pyrophosphate (SFP), a new non-heme iron formulation on maternal and neonate iron and hematological status, placental transport and pregnancy outcome; Methods: Fifteen non-anemic pregnant sows were recruited to the experiment at day 80 of pregnancy and randomized into the non-supplemented group (control; n = 5) and two groups receiving oral iron supplementation-sows given sucrosomial ferric pyrophosphate, 60 mg Fe/day (SFP; n = 5) (SiderAL®, Pisa, Italy) and sows given ferrous sulfate 60 mg Fe/day (Gambit, Kutno, Poland) (FeSO4; n = 5) up to delivery (around day 117). Biological samples were collected from maternal and piglet blood, placenta and piglet tissues. In addition, data on pregnancy outcome were recorded.; Results: Results of our study show that both iron supplements do not alter neither systemic iron homeostasis in pregnant sows nor their hematological status at the end of pregnancy. Moreover, we did not detect any changes of iron content in the milk and colostrum of iron supplemented sows in comparison to controls. Neonatal iron status of piglets from iron supplemented sows was not improved compared with the progeny of control females. No statistically significant differences were found in average piglets weight and number of piglets per litter between animals from experimental groups. The placental expression of iron transporters varied depending on the iron supplement.

18.
Nutrients ; 13(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396831

RESUMO

In mammals, 2 × 1012 red blood cells (RBCs) are produced every day in the bone marrow to ensure a constant supply of iron to maintain effective erythropoiesis. Impaired iron absorption in the duodenum and inefficient iron reutilization from senescent RBCs by macrophages contribute to the development of anemia. Ferroportin (Fpn), the only known cellular iron exporter, as well as hephaestin (Heph) and ceruloplasmin, two copper-dependent ferroxidases involved in the above-mentioned processes, are key elements of the interaction between copper and iron metabolisms. Crosslinks between these metals have been known for many years, but metabolic effects of one on the other have not been elucidated to date. Neonatal iron deficiency anemia in piglets provides an interesting model for studying this interplay. In duodenal enterocytes of young anemic piglets, we identified iron deposits and demonstrated increased expression of ferritin with a concomitant decline in both Fpn and Heph expression. We postulated that the underlying mechanism involves changes in copper distribution within enterocytes as a result of decreased expression of the copper transporter-Atp7b. Obtained results strongly suggest that regulation of iron absorption within enterocytes is based on the interaction between proteins of copper and iron metabolisms and outcompetes systemic regulation.


Assuntos
Anemia Ferropriva/metabolismo , Proteínas de Transporte de Cátions/biossíntese , ATPases Transportadoras de Cobre/biossíntese , Cobre/metabolismo , Regulação para Baixo , Duodeno/metabolismo , Enterócitos/metabolismo , Doenças dos Suínos/metabolismo , Anemia Ferropriva/veterinária , Animais , Deficiências de Ferro , Suínos
19.
Biol Trace Elem Res ; 196(2): 472-480, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31701465

RESUMO

Heme is an efficient dietary iron supplement applied in humans and animals to prevent iron deficiency anemia (IDA). We have recently reported that the use of bovine hemoglobin as a dietary source of heme iron efficiently counteracts the development of IDA in young piglets, which is the common problem in pig industry. Here, we used maternal Polish Large White and terminal sire breed (L990) pigs differing in traits for meat production to evaluate the long-term effect of split supplementation with intramuscularly administered small amount of iron dextran and orally given hemoglobin on hematological indices, iron status, growth performance, slaughter traits, and meat quality at the end of fattening. Results of our study show that in pigs of both breeds split supplementation was effective in maintaining physiological values of RBC and blood plasma iron parameters as well as growth performance, carcass parameters, and meat quality traits. Our results prove the effectiveness of split iron supplementation of piglets in a far-reach perspective.


Assuntos
Eritrócitos/efeitos dos fármacos , Hemoglobinas/metabolismo , Complexo Ferro-Dextran/farmacologia , Ferro/sangue , Carne/análise , Suínos , Administração Oral , Animais , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Hemoglobinas/administração & dosagem , Complexo Ferro-Dextran/administração & dosagem , Masculino , Polônia , Suínos/anatomia & histologia , Suínos/sangue , Suínos/crescimento & desenvolvimento , Suínos/metabolismo , Fatores de Tempo , Aumento de Peso/efeitos dos fármacos
20.
Sci Rep ; 9(1): 11102, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366967

RESUMO

Moderate intravascular hemolysis is a common condition in newborns. It is followed by the accumulation of bilirubin, which is a secondary product of the activity of heme oxygenase-1, an enzyme that catalyzes the breakdown of heme released from disrupted erythrocytes and taken up by hepatic macrophages. Although these cells are a major site of enzymatic heme breakdown in adults, we show here that epithelial cells of proximal tubules in the kidneys perform the functions of both heme uptake and catabolism in mouse neonates. A time-course study examining mouse pups during the neonatal period showed a gradual recovery from hemolysis, and concomitant decreases in the expression of heme-related genes and non-heme iron transporters in the proximal tubules. By adjusting the expression of iron-handling proteins in response to the disappearance of hemolysis in mouse neonates, the kidneys may play a role in the detoxification of iron and contribute to its recirculation from the primary urine to the blood.


Assuntos
Heme/metabolismo , Hemólise/fisiologia , Ferro/metabolismo , Rim/metabolismo , Animais , Bilirrubina/metabolismo , Modelos Animais de Doenças , Eritrócitos/metabolismo , Heme Oxigenase-1/metabolismo , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...