Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298446

RESUMO

Here, we examined the expression of ceramide metabolism enzymes in the subcutaneous adipose tissue (SAT), epicardial adipose tissue (EAT) and perivascular adipose tissue (PVAT) of 30 patients with coronary artery disease (CAD) and 30 patients with valvular heart disease (VHD) by means of quantitative polymerase chain reaction and fluorescent Western blotting. The EAT of patients with CAD showed higher expression of the genes responsible for ceramide biosynthesis (SPTLC1, SPTLC2, CERS1, 5, 6, DEGS1, and SMPD1) and utilization (ASAH1, SGMS1). PVAT was characterized by higher mRNA levels of CERS3, CERS4, DEGS1, SMPD1, and ceramide utilization enzyme (SGMS2). In patients with VHD, there was a high CERS4, DEGS1, and SGMS2 expression in the EAT and CERS3 and CERS4 expression in the PVAT. Among patients with CAD, the expression of SPTLC1 in SAT and EAT, SPTLC2 in EAT, CERS2 in all studied AT, CERS4 and CERS5 in EAT, DEGS1 in SAT and EAT, ASAH1 in all studied AT, and SGMS1 in EAT was higher than in those with VHD. Protein levels of ceramide-metabolizing enzymes were consistent with gene expression trends. The obtained results indicate an activation of ceramide synthesis de novo and from sphingomyelin in cardiovascular disease, mainly in EAT, that contributes to the accumulation of ceramides in this location.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Humanos , Ceramidas/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Tecido Adiposo/metabolismo , Gordura Subcutânea/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Pericárdio/metabolismo
2.
J Am Heart Assoc ; 12(1): e028215, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36565196

RESUMO

Background Whereas the risk factors for structural valve degeneration (SVD) of glutaraldehyde-treated bioprosthetic heart valves (BHVs) are well studied, those responsible for the failure of BHVs fixed with alternative next-generation chemicals remain largely unknown. This study aimed to investigate the reasons behind the development of SVD in ethylene glycol diglycidyl ether-treated BHVs. Methods and Results Ten ethylene glycol diglycidyl ether-treated BHVs excised because of SVD, and 5 calcified aortic valves (AVs) replaced with BHVs because of calcific AV disease were collected and their proteomic profile was deciphered. Then, BHVs and AVs were interrogated for immune cell infiltration, microbial contamination, distribution of matrix-degrading enzymes and their tissue inhibitors, lipid deposition, and calcification. In contrast with dysfunctional AVs, failing BHVs suffered from complement-driven neutrophil invasion, excessive proteolysis, unwanted coagulation, and lipid deposition. Neutrophil infiltration was triggered by an asymptomatic bacterial colonization of the prosthetic tissue. Neutrophil elastase, myeloblastin/proteinase 3, cathepsin G, and matrix metalloproteinases (MMPs; neutrophil-derived MMP-8 and plasma-derived MMP-9), were significantly overexpressed, while tissue inhibitors of metalloproteinases 1/2 were downregulated in the BHVs as compared with AVs, together indicative of unbalanced proteolysis in the failing BHVs. As opposed to other proteases, MMP-9 was mostly expressed in the disorganized prosthetic extracellular matrix, suggesting plasma-derived proteases as the primary culprit of SVD in ethylene glycol diglycidyl ether-treated BHVs. Hence, hemodynamic stress and progressive accumulation of proteases led to the extracellular matrix degeneration and dystrophic calcification, ultimately resulting in SVD. Conclusions Neutrophil- and plasma-derived proteases are responsible for the loss of BHV mechanical competence and need to be thwarted to prevent SVD.


Assuntos
Bioprótese , Insuficiência Cardíaca , Próteses Valvulares Cardíacas , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Próteses Valvulares Cardíacas/efeitos adversos , Proteólise , Proteômica , Valvas Cardíacas/metabolismo , Valva Aórtica/cirurgia , Valva Aórtica/metabolismo , Insuficiência Cardíaca/etiologia , Peptídeo Hidrolases/metabolismo , Lipídeos , Bioprótese/efeitos adversos
3.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743174

RESUMO

A 72-year-old female patient with mixed rheumatic mitral valve disease and persistent atrial fibrillation underwent mitral valve replacement and suffered from a combined thrombosis of the bioprosthetic valve and the left atrium as soon as 2 days post operation. The patient immediately underwent repeated valve replacement and left atrial thrombectomy. Yet, four days later the patient died due to the recurrent prosthetic valve and left atrial thrombosis which both resulted in an extremely low cardiac output. In this patient's case, the thrombosis was notable for the resistance to anticoagulant therapy as well as for aggressive neutrophil infiltration and release of neutrophil extracellular traps (NETs) within the clot, as demonstrated by immunostaining. The reasons behind these phenomena remained unclear, as no signs of sepsis or contamination of the BHV were documented, although the patient was diagnosed with inherited thrombophilia that could impede the fibrinolysis. The described case highlights the hazard of immunothrombosis upon valve replacement and elucidates its mechanisms in this surgical setting.


Assuntos
Implante de Prótese de Valva Cardíaca , Próteses Valvulares Cardíacas , Trombose , Idoso , Feminino , Átrios do Coração , Próteses Valvulares Cardíacas/efeitos adversos , Implante de Prótese de Valva Cardíaca/efeitos adversos , Humanos , Valva Mitral/cirurgia , Tromboinflamação , Trombose/diagnóstico
4.
Front Cardiovasc Med ; 8: 739549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760942

RESUMO

Currently, an ultrastructural analysis of cardiovascular tissues is significantly complicated. Routine histopathological examinations and immunohistochemical staining suffer from a relatively low resolution of light microscopy, whereas the fluorescence imaging of plaques and bioprosthetic heart valves yields considerable background noise from the convoluted extracellular matrix that often results in a low signal-to-noise ratio. Besides, the sectioning of calcified or stent-expanded blood vessels or mineralised heart valves leads to a critical loss of their integrity, demanding other methods to be developed. Here, we designed a conceptually novel approach that combines conventional formalin fixation, sequential incubation in heavy metal solutions (osmium tetroxide, uranyl acetate or lanthanides, and lead citrate), and the embedding of the whole specimen into epoxy resin to retain its integrity while accessing the region of interest by grinding and polishing. Upon carbon sputtering, the sample is visualised by means of backscattered scanning electron microscopy. The technique fully preserves calcified and stent-expanded tissues, permits a detailed analysis of vascular and valvular composition and architecture, enables discrimination between multiple cell types (including endothelial cells, vascular smooth muscle cells, fibroblasts, adipocytes, mast cells, foam cells, foreign-body giant cells, canonical macrophages, neutrophils, and lymphocytes) and microvascular identities (arterioles, venules, and capillaries), and gives a technical possibility for quantitating the number, area, and density of the blood vessels. Hence, we suggest that our approach is capable of providing a pathophysiological insight into cardiovascular disease development. The protocol does not require specific expertise and can be employed in virtually any laboratory that has a scanning electron microscope.

5.
J Med Case Rep ; 10: 51, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26956734

RESUMO

BACKGROUND: The problem of prosthetic heart valve selection in fertile women with acquired heart defects remains crucial in modern cardiology. Mechanical heart valves require lifelong indirect anticoagulant therapy, which has significant fetal toxicity and is unacceptable for women planning pregnancy. Bioprosthetic heart valves are the best choice for fertile women; however, their durability is limited, and reoperations are required. CASE PRESENTATION: We describe the clinical case of a 21-year-old Russian woman with infectious endocarditis who underwent heart valve replacement with an epoxy-treated mitral valve prosthesis. CONCLUSIONS: Epoxy-treated bioprosthetic heart valves can be used without long-term anticoagulant therapy because of their optimal hemodynamic functional parameters. Moreover, their high thromboresistance and resistance to infection improve patients' quality of life in their late postoperative period. We recommend these valves both in older persons and in young patients including women who are planning pregnancy.


Assuntos
Antibacterianos/administração & dosagem , Ceftriaxona/administração & dosagem , Endocardite/cirurgia , Implante de Prótese de Valva Cardíaca/métodos , Valva Mitral/patologia , Complicações Cardiovasculares na Gravidez/cirurgia , Complicações Infecciosas na Gravidez/tratamento farmacológico , Choque Séptico/tratamento farmacológico , Adulto , Anticoagulantes/administração & dosagem , Cesárea , Endocardite/diagnóstico , Endocardite/fisiopatologia , Feminino , Fertilidade , Próteses Valvulares Cardíacas , Humanos , Gravidez , Complicações Cardiovasculares na Gravidez/diagnóstico , Complicações Cardiovasculares na Gravidez/fisiopatologia , Complicações Infecciosas na Gravidez/diagnóstico , Complicações Infecciosas na Gravidez/fisiopatologia , Resultado da Gravidez , Choque Séptico/diagnóstico , Choque Séptico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...