Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36363064

RESUMO

In this article, we present a numerical study on stabilization and eigenmodes of the so-called skyrmion chiral spin texture in nanometric dots. The first aim of this study is to identify the appropriate multilayer in a set of Pt/Co/MgO structures with different Co thicknesses that have been previously experimentally characterized. Stabilization occurs if the energy favoring skyrmions is greater than the geometric mean of the exchange and anisotropy energies. Both the energy favoring skyrmions and the anisotropy contribution depend on the Co thickness. The appropriate multilayer is obtained for a specific Co thickness. MuMax simulations are used to calculate the precise static magnetization configuration for the experimental parameters, allowing us select the appropriate structure. Moreover, in view of experimental study of skyrmion dynamics by means of Brillouin light scattering, the eigenfrequency, eigenmode profile, and spectral density are calculated for different dot sizes. Finally, the optimal dot size that allows for a feasible experiment is obtained.

2.
Nat Commun ; 12(1): 3280, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078887

RESUMO

The manipulation of magnetization with interfacial modification using various spin-orbit coupling phenomena has been recently revisited due to its scientific and technological potential for next-generation memory devices. Herein, we experimentally and theoretically demonstrate the interfacial Dzyaloshinskii-Moriya interaction characteristics penetrating through a MgO dielectric layer inserted between the Pt and CoFeSiB. The inserted MgO layer seems to function as a chiral exchange interaction mediator of the interfacial Dzyaloshinskii-Moriya interaction from the heavy metal atoms to ferromagnet ones. The potential physical mechanism of the anti-symmetric exchange is based on the tunneling-like behavior of conduction electrons through the semi-conductor-like ultrathin MgO. Such behavior can be correlated with the oscillations of the indirect exchange coupling of the Ruderman-Kittel-Kasuya-Yosida type. From the theoretical demonstration, we could provide approximate estimation and show qualitative trends peculiar to the system under investigation.

3.
Nano Lett ; 18(8): 4871-4877, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29924621

RESUMO

Electric control of magnetism is a prerequisite for efficient and low-power spintronic devices. More specifically, in heavy metal-ferromagnet-insulator heterostructures, voltage gating has been shown to locally and dynamically tune magnetic properties such as interface anisotropy and saturation magnetization. However, its effect on interfacial Dzyaloshinskii-Moriya Interaction (DMI), which is crucial for the stability of magnetic skyrmions, has been challenging to achieve and has not been reported yet for ultrathin films. Here, we demonstrate a 130% variation of DMI with electric field in Ta/FeCoB/TaO x trilayer through Brillouin Light Spectroscopy (BLS). Using polar magneto-optical Kerr-effect microscopy, we further show a monotonic variation of DMI and skyrmionic bubble size with electric field with an unprecedented efficiency. We anticipate through our observations that a sign reversal of DMI with an electric field is possible, leading to a chirality switch. This dynamic manipulation of DMI establishes an additional degree of control to engineer programmable skyrmion-based memory or logic devices.

5.
Nat Nanotechnol ; 11(5): 449-54, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26809057

RESUMO

Magnetic skyrmions are chiral spin structures with a whirling configuration. Their topological properties, nanometre size and the fact that they can be moved by small current densities have opened a new paradigm for the manipulation of magnetization at the nanoscale. Chiral skyrmion structures have so far been experimentally demonstrated only in bulk materials and in epitaxial ultrathin films, and under an external magnetic field or at low temperature. Here, we report on the observation of stable skyrmions in sputtered ultrathin Pt/Co/MgO nanostructures at room temperature and zero external magnetic field. We use high lateral resolution X-ray magnetic circular dichroism microscopy to image their chiral Néel internal structure, which we explain as due to the large strength of the Dzyaloshinskii-Moriya interaction as revealed by spin wave spectroscopy measurements. Our results are substantiated by micromagnetic simulations and numerical models, which allow the identification of the physical mechanisms governing the size and stability of the skyrmions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...