Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34641280

RESUMO

Perovskite solar cells that use carbon (C) as a replacement of the typical metal electrodes, which are most commonly employed, have received growing interest over the past years, owing to their low cost, ease of fabrication and high stability under ambient conditions. Even though Power Conversion Efficiencies (PCEs) have increased over the years, there is still room for improvement, in order to compete with metal-based devices, which exceed 25% efficiency. With the scope of increasing the PCE of Carbon based Perovskite Solar Cells (C-PSCs), in this work we have employed a series of ammonium iodides (ammonium iodide, ethylammonium iodide, tetrabutyl ammonium iodide, phenethylammonium iodide and 5-ammonium valeric acid iodide) as additives in the multiple cation-mixed halide perovskite precursor solution. This has led to a significant increase in the PCE of the corresponding devices, by having a positive impact on the photocurrent values obtained, which exhibited an increase exceeding 20%, from 19.8 mA/cm2, for the reference perovskite, to 24 mA/cm2, for the additive-based perovskite. At the same time, the ammonium iodide salts were used in a post-treatment method. By passivating the defects, which provide charge recombination centers, an improved performance of the C-PSCs has been achieved, with enhanced FF values reaching 59%, which is a promising result for C-PSCs, and Voc values up to 850 mV. By combining the results of these parallel investigations, C-PSCs of the triple mesoscopic structure with a PCE exceeding 10% have been achieved, while the in-depth investigation of the effects of ammonium iodides in this PSC structure provide a fruitful insight towards the optimum exploitation of interface and bulk engineering, for high efficiency and stable C-PSCs, with a structure that is favorable for large area applications.

2.
Materials (Basel) ; 13(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708217

RESUMO

In common commercially available electrochromic glass panes, the active materials such as WO3 and NiOx films are typically deposited by either physical vapor or sputtering under vacuum. In the present studies, we report on the inkjet printing method to deposit both electrochromic and ion storage electrode layers under ambient conditions. An ion storage layer based on cerium modified TiO2 and electrochromic nanocrystalline WO3 were both prepared under the wet method and deposited as inks on conductive substrates. Both compounds possess porous morphology facilitating high ion diffusion during electrochemical processes. In particular, the ion storage layer was evaluated in terms of porosity, charge capacity and ion diffusion coefficient. A scaled up 90 cm2 electrochromic device with quasi-solid-state electrolyte was made with the aforementioned materials and evaluated in terms of optical modulation in the visible region, cyclic voltammetry and color efficiency. High contrast between 13.2% and 71.6% for tinted and bleached states measured at 550 nm was monitored under low bias at +2.5 volt and -0.3 volts respectively. Moreover, the calculated energy density equal to 1.95 × 10-3 mWh cm-2 and the high areal capacitance of 156.19 mF cm-2 of the device could combine the electrochromic behavior of the cell with energy storage capability so as to be a promising candidate for future applications into smart buildings.

3.
Inorg Chem ; 54(8): 3979-88, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25844512

RESUMO

Corrosiveness is one of the main drawbacks of using the iodide/triiodide redox couple in dye-sensitized solar cells (DSSCs). Alternative redox couples including transition metal complexes have been investigated where surprisingly high efficiencies for the conversion of solar to electrical energy have been achieved. In this paper, we examined the development of a DSSC using an electrolyte based on square pyramidal oxidovanadium(IV/V) complexes. The oxidovanadium(IV) complex (Ph4P)2[V(IV)O(hybeb)] was combined with its oxidized analogue (Ph4P)[V(V)O(hybeb)] {where hybeb(4-) is the tetradentate diamidodiphenolate ligand [1-(2-hydroxybenzamido)-2-(2-pyridinecarboxamido)benzenato}and applied as a redox couple in the electrolyte of DSSCs. The complexes exhibit large electron exchange and transfer rates, which are evident from electron paramagnetic resonance spectroscopy and electrochemistry, rendering the oxidovanadium(IV/V) compounds suitable for redox mediators in DSSCs. The very large self-exchange rate constant offered an insight into the mechanism of the exchange reaction most likely mediated through an outer-sphere exchange mechanism. The [V(IV)O(hybeb)](2-)/[V(V)O(hybeb)](-) redox potential and the energy of highest occupied molecular orbital (HOMO) of the sensitizing dye N719 and the HOMO of [V(IV)O(hybeb)](2-) were calculated by means of density functional theory electronic structure calculation methods. The complexes were applied as a new redox mediator in DSSCs, while the cell performance was studied in terms of the concentration of the reduced and oxidized form of the complexes. These studies were performed with the commercial Ru-based sensitizer N719 absorbed on a TiO2 semiconducting film in the DSSC. Maximum energy conversion efficiencies of 2% at simulated solar light (AM 1.5; 1000 W m(-2)) with an open circuit voltage of 660 mV, a short-circuit current of 5.2 mA cm(-2), and a fill factor of 0.58 were recorded without the presence of any additives in the electrolyte.


Assuntos
Corantes/química , Complexos de Coordenação/química , Teoria Quântica , Energia Solar , Vanadatos/química , Complexos de Coordenação/síntese química , Estrutura Molecular , Oxirredução
4.
J Nanosci Nanotechnol ; 10(9): 6093-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21133154

RESUMO

In this work, we present a new precursor for the preparation of thin and transparent nanocrystalline TiO2 films, which involves the use of Titanium(IV) bis(ammonium lactato) dihydroxide as Ti(IV) source and Triton X-100 as surfactant template. The films were heated at various temperatures in order to optimize their nanostructure and their photocatalytic activity. The morphology and the nanostructure of the films were characterized by SEM and AFM. Crystallinity of the films was examined by XRD and their light absorption with UV-Vis spectroscopy. The photocatalytic activity of the films was investigated by using an azo dye: Basic Blue 41. Excitation of the samples was made by low intensity black light tubes emitting in the Near-UV. The photodegradation of the dye was studied as a function of the quality of the deposited TiO2 films and the calcination temperature in comparison with similar films made by standard procedures.

5.
Nanotechnology ; 20(49): 495201, 2009 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19893143

RESUMO

Hybrid solar cells have been constructed by using nanocrystalline titania and hole-transporting polymers. Titania was deposited on fluorine-doped tin-oxide transparent electrodes in three layers: a blocking layer and two nanostructured layers, giving densely packed or open structures. Open structures produced higher currents due to better polymer penetration and larger oxide-polymer interface. Cells based on the dithiophene-unit-containing polymer gave higher open-circuit voltage. Efficient cells could be made only in the presence of a dye sensitizer and a lithium salt. Cells were neither sealed nor encapsulated and their components were deposited under ambient conditions except for the metal back electrode, which was deposited under vacuum. Cells demonstrated a transient behavior in two stages: initially an increase of both current and voltage followed by an increase in voltage and a drop in current. Both quantities were stabilized at values approximately established within a few days. These values remained stable for several months when the cells were stored in the dark.

6.
J Hazard Mater ; 163(2-3): 756-60, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18703278

RESUMO

Aqueous solutions of the herbicide azimsulfuron have been treated by a photocatalytic process employing titania nanocrystalline films as photocatalyst. Results showed that solutions of this herbicide at maximum possible concentration can be photodegraded in a time of a few hours by using low intensity UVA radiation comparable with that of the UVA of solar noon. Similar results have also been obtained with simulated solar radiation. Thus heterogeneous photocatalysis can be employed for the treatment of waters polluted by this herbicide.


Assuntos
Fotólise/efeitos dos fármacos , Pirazóis/efeitos da radiação , Sulfonamidas/efeitos da radiação , Titânio/farmacologia , Poluentes da Água , Catálise , Herbicidas/efeitos da radiação , Luz , Nanopartículas , Poluentes da Água/efeitos da radiação
7.
J Nanosci Nanotechnol ; 7(2): 555-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17450794

RESUMO

Dye-sensitized solar cells were made by using nanocrystalline titania deposited on Fluorine-doped SnO2 (FTO) electrodes. Nanocrystalline titania deposition was made by the sol-gel method using reverse micelles of bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) in cyclohexane as reaction medium. This surfactant could be easily removed from the deposited nanocomposite organic-inorganic film by simple rinsing with distilled water, without affecting titania adherence on FTO electrode. These nanocrystalline titania electrodes were used to make solar cells either without sintering or after sintering at various temperatures. Sintering extensively affected short circuit current but had small effect on device open-circuit voltage. Thus satisfactory photovoltaic response could be obtained even with devices made of non-sintered (room-temperature) titania.


Assuntos
Fontes de Energia Elétrica , Fotoquímica/instrumentação , Luz Solar , Tensoativos/química , Titânio/química , Corantes/química , Cristalização , Cicloexanos/química , Ácido Dioctil Sulfossuccínico/química , Flúor/química , Géis , Micelas , Microeletrodos , Microscopia de Força Atômica , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Transição de Fase , Fotoquímica/métodos , Energia Solar , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Compostos de Estanho/química , Água/química , Difração de Raios X
8.
J Phys Chem B ; 109(27): 13052-5, 2005 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16852621

RESUMO

This study explores the potential of heterogeneous activation of Oxone (peroxymonosulfate) in water using cobalt oxides. Two commercially available cobalt oxides, CoO and Co3O4 (CoO.Co2O3) were tested for the activation of peroxymonosulfate and the consequent oxidation of 2,4-dichlorophenol (2,4-DCP) via a sulfate radical mechanism. Both systems, CoO/Oxone and Co3O4/Oxone, were tested at acidic and neutral pH and compared with the homogeneous Co(NO3)2/Oxone. The activity of these systems was evaluated on the basis of the induced transformation of 2,4-DCP as well as the dissolution of cobalt occurred after 2 h of reaction. It was observed that only Co3O4 activates peroxymonosulfate heterogeneously, with its heterogeneity being more pronounced at neutral pH. Both CoO and Co2O3 contained in Co3O4 might be responsible for the observed heterogeneity, and the relative mechanisms are further discussed here. To our knowledge, this is perhaps the first study that documents the heterogeneous activation of peroxymonosulfate with cobalt, the best-known catalyst-activator for this inorganic peroxide.

9.
J Phys Chem B ; 109(30): 14387-95, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16852810

RESUMO

A new sol-gel precursor, based on 1-methyl-3-[3-(trimethoxy-lambda(4)-silyl)propyl]imidazolium iodide (MTMSPI(+)I(-)), was synthesized and investigated as a potential novel quasi-solid-state ionic liquid redox electrolyte for dye-sensitized photoelectrochemical (DSPEC) cells of the Graetzel type. MTMSPI(+)I(-) was hydrolyzed with acidified water, and the reaction products of the sol-gel condensation reactions were assessed with the help of (29)Si NMR and infrared spectroscopic techniques. Results of time-dependent analyses showed the formation of a positively charged polyhedral cubelike silsesquioxane species, which still contained a small amount of silanol end groups that were removed after heating at 200 degrees C. After cooling, the material formed was a tough, yellowish, and transparent solid, consisting mainly of ladderlike polysilsesquioxane species. The specific conductivity (sigma) of the nonhydrolyzed MTMSPI(+)I(-) (no I(2)) was 0.23 mS/cm, while the activation energy (E(a)), determined from the Vogel-Tamman-Fulcher (VTF) relation, was 0.29 kJ/mol. After 56 days of aging the sigma value of the hydrolyzed MTMSPI(+)I(-) dropped to 0.11 mS/cm but the viscosity had already increased to 7500 Pa.s after 17 days, demonstrating that a quasi solid state was attained. Apparent diffusion coefficients (D(app)) of I(-) and I(3)(-) obtained from the voltammetric measurements were approximately 10(-7) cm(2)/s and decreased to approximately 10(-8) cm(2)/s after 15 days of sol aging. Time-dependent vibrational spectra, which served in assessing the hydrolysis and condensation reactions of MTMSPI(+)I(-), were measured with the help of the attenuated total reflectance (ATR) IR spectroscopic technique. The results revealed that, in the course of condensation of sols, the refractive index of the modes attributed to the polysilsesquioxane species exhibited strong dispersion, which led to a shift of the vibrational band position in the experimental ATR spectra. This effect accompanies the sol-to-gel transformations and has not yet been considered as a possible error in analysis of the ATR spectra of sols and gels. The calculation procedure for obtaining the corresponding transmission spectra is briefly outlined, and the results are applied in this work.


Assuntos
Iodetos/química , Íons/química , Compostos de Organossilício/química , Estrutura Molecular , Fotoquímica , Análise Espectral , Viscosidade , Água/química
10.
Langmuir ; 20(21): 9103-7, 2004 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-15461493

RESUMO

Titania nanocrystalline films have been deposited on solid substrates by a sol-gel procedure carried out in Triton X-100 reverse micelles. When the dye Basic Blue is adsorbed on these films, it demonstrates a strong metachromatic effect; that is, it aggregates, resulting in a blue shift of its absorption spectrum. Metachromasy in this system is related to the hydrophilicity of the film surface and to the humidity of the film environment. Films composed of 67% titania and 33% silica gave an intense and reversible metachromatic effect that can be exploited to make a handy humidity sensor. Photodegradation of Basic Blue on titania films is faster in humid environments than in dry environments, and this goes in parallel with metachromatic effects.


Assuntos
Membranas Artificiais , Nanoestruturas/química , Titânio/química , Adsorção , Corantes/química , Corantes/efeitos da radiação , Cristalização , Micelas , Fotoquímica , Dióxido de Silício/química , Propriedades de Superfície , Fatores de Tempo , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...