Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 146(1): 164-76, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21729787

RESUMO

The mechanisms that generate specific neuronal connections in the brain are under intense investigation. In zebrafish, retinal ganglion cells project their axons into at least six layers within the neuropil of the midbrain tectum. Each axon elaborates a single, planar arbor in one of the target layers and forms synapses onto the dendrites of tectal neurons. We show that the laminar specificity of retinotectal connections does not depend on self-sorting interactions among RGC axons. Rather, tectum-derived Slit1, signaling through axonal Robo2, guides neurites to their target layer. Genetic and biochemical studies indicate that Slit binds to Dragnet (Col4a5), a type IV Collagen, which forms the basement membrane on the surface of the tectum. We further show that radial glial endfeet are required for the basement-membrane anchoring of Slit. We propose that Slit1 signaling, perhaps in the form of a superficial-to-deep gradient, presents laminar positional cues to ingrowing retinal axons.


Assuntos
Encéfalo/embriologia , Colágeno Tipo IV/metabolismo , Teto do Mesencéfalo/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/metabolismo , Células Ganglionares da Retina/metabolismo , Transdução de Sinais , Peixe-Zebra/metabolismo
2.
Development ; 138(12): 2457-65, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21610027

RESUMO

The specific partnering of synaptically connected neurons is central to nervous system function. Proper wiring requires the interchange of signals between a postmitotic neuron and its environment, a distinct pattern of transcription in the nucleus, and deployment of guidance and adhesion cues to the cell surface. To identify genes involved in neurite targeting by retinal ganglion cells (GCs), their presynaptic partners in the retina, and their postsynaptic targets in the optic tectum, we undertook a forward genetic screen for mutations disrupting visual responses in zebrafish. This rapid primary screen was subsequently refined by immunohistochemical labeling of retinal and tectal neurites to detect patterning errors. From this unbiased screen, the notorious (noto) mutant exhibited the most specific phenotypes: intact retinal and tectal differentiation but multiple neurite targeting defects in the retinal inner plexiform layer (IPL) and tectal neuropil. Positional cloning and morpholino phenocopy revealed that the mutation disrupts Topoisomerase IIß (Top2b), a broadly distributed nuclear protein involved in chromatin modifications during postmitotic differentiation. Top2b-DNA interactions are known to regulate transcription of developmentally important genes, including axon guidance factors and cell adhesion molecules, but a specific role in local synaptic targeting has not been previously described. The neurite targeting defects among GC axons are largely restricted to crossovers between sublaminae of a specific layer, SFGS, and were shown by mosaic analysis to be autonomous to the GC axons. The noto mutant provides the first example of the importance of an epigenetic regulator, Top2b, in the intricate series of events that lead to a properly wired visual system.


Assuntos
Axônios/fisiologia , DNA Topoisomerases Tipo II/fisiologia , Proteínas de Ligação a DNA/fisiologia , Dendritos/fisiologia , Células Ganglionares da Retina/fisiologia , Peixe-Zebra/metabolismo , Animais , Epigenômica , Visão Ocular/fisiologia , Vias Visuais
3.
Neuron ; 53(1): 65-77, 2007 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17196531

RESUMO

The neural circuitry that constrains visual acuity in the CNS has not been experimentally identified. We show here that zebrafish blumenkohl (blu) mutants are impaired in resolving rapid movements and fine spatial detail. The blu gene encodes a vesicular glutamate transporter expressed by retinal ganglion cells. Mutant retinotectal synapses release less glutamate, per vesicle and per terminal, and fatigue more quickly than wild-type in response to high-frequency stimulation. In addition, mutant axons arborize more extensively, thus increasing the number of synaptic terminals and effectively normalizing the combined input to postsynaptic cells in the tectum. This presumably homeostatic response results in larger receptive fields of tectal cells and a degradation of the retinotopic map. As predicted, mutants have a selective deficit in the capture of small prey objects, a behavior dependent on the tectum. Our studies successfully link the disruption of a synaptic protein to complex changes in neural circuitry and behavior.


Assuntos
Terminações Pré-Sinápticas/metabolismo , Células Ganglionares da Retina/metabolismo , Transmissão Sináptica/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Transtornos da Visão/genética , Peixe-Zebra/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Ácido Glutâmico/metabolismo , Mutação/genética , Comportamento Predatório/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Células Ganglionares da Retina/ultraestrutura , Colículos Superiores/anormalidades , Colículos Superiores/metabolismo , Colículos Superiores/fisiopatologia , Proteína Vesicular 2 de Transporte de Glutamato/genética , Transtornos da Visão/metabolismo , Transtornos da Visão/fisiopatologia , Visão Ocular/genética , Vias Visuais/anormalidades , Vias Visuais/metabolismo , Vias Visuais/fisiopatologia , Peixe-Zebra/anatomia & histologia
4.
Dev Biol ; 303(1): 144-56, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17141209

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) regulates multiple stages of the cell cycle, most prominently mitosis. We describe zebrafish with mutations in two APC/C subunits, Cdc16 and Cdc26, whose phenotypes reveal a multifaceted set of defects resulting from the gradual depletion of the APC/C. First, loss of the APC/C in dividing cells results in mitotic arrest, followed by apoptosis. This defect becomes detectable in different organs at different larval ages, because the subunits of the APC/C are maternally deposited, are unusually stable, and are depleted at uneven rates in different tissues. Second, loss of the APC/C in quiescent or differentiated cells results in improper re-entry into the cell cycle, again in an apparently tissue-specific manner. This study is the first demonstration of both functions of the APC/C in a vertebrate organism and also provides an illustration of the surprisingly complex effects that essential, maternally supplied factors can have on the growing animal over a period of 10 days or longer.


Assuntos
Ciclo Celular/fisiologia , Mitose/fisiologia , Modelos Biológicos , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Peixe-Zebra/embriologia , Ciclossomo-Complexo Promotor de Anáfase , Animais , Sequência de Bases , Proteínas de Ciclo Celular/genética , Mapeamento Cromossômico , Ciclina B , Primers do DNA , Imuno-Histoquímica , Dados de Sequência Molecular , Retina/embriologia , Análise de Sequência de DNA
5.
PLoS Genet ; 1(5): e66, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16311625

RESUMO

The visual system converts the distribution and wavelengths of photons entering the eye into patterns of neuronal activity, which then drive motor and endocrine behavioral responses. The gene products important for visual processing by a living and behaving vertebrate animal have not been identified in an unbiased fashion. Likewise, the genes that affect development of the nervous system to shape visual function later in life are largely unknown. Here we have set out to close this gap in our understanding by using a forward genetic approach in zebrafish. Moving stimuli evoke two innate reflexes in zebrafish larvae, the optomotor and the optokinetic response, providing two rapid and quantitative tests to assess visual function in wild-type (WT) and mutant animals. These behavioral assays were used in a high-throughput screen, encompassing over half a million fish. In almost 2,000 F2 families mutagenized with ethylnitrosourea, we discovered 53 recessive mutations in 41 genes. These new mutations have generated a broad spectrum of phenotypes, which vary in specificity and severity, but can be placed into only a handful of classes. Developmental phenotypes include complete absence or abnormal morphogenesis of photoreceptors, and deficits in ganglion cell differentiation or axon targeting. Other mutations evidently leave neuronal circuits intact, but disrupt phototransduction, light adaptation, or behavior-specific responses. Almost all of the mutants are morphologically indistinguishable from WT, and many survive to adulthood. Genetic linkage mapping and initial molecular analyses show that our approach was effective in identifying genes with functions specific to the visual system. This collection of zebrafish behavioral mutants provides a novel resource for the study of normal vision and its genetic disorders.


Assuntos
Comportamento Animal , Visão Ocular , Animais , Axônios , Etilnitrosoureia/farmacologia , Regulação da Expressão Gênica , Ligação Genética , Técnicas Genéticas , Mutagênese , Fenômenos Fisiológicos Oculares , Fenótipo , Células Fotorreceptoras , Peixe-Zebra
6.
Development ; 132(13): 2955-67, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15930106

RESUMO

The retinotectal projection is a premier model system for the investigation of molecular mechanisms that underlie axon pathfinding and map formation. Other important features, such as the laminar targeting of retinal axons, the control of axon fasciculation and the intrinsic organization of the tectal neuropil, have been less accessible to investigation. In order to visualize these processes in vivo, we generated a transgenic zebrafish line expressing membrane-targeted GFP under control of the brn3c promoter/enhancer. The GFP reporter labels a distinct subset of retinal ganglion cells (RGCs), which project mainly into one of the four retinorecipient layers of the tectum and into a small subset of the extratectal arborization fields. In this transgenic line, we carried out an ENU-mutagenesis screen by scoring live zebrafish larvae for anatomical phenotypes. Thirteen recessive mutations in 12 genes were discovered. In one mutant, ddl, the majority of RGCs fail to differentiate. Three of the mutations, vrt, late and tard, delay the orderly ingrowth of retinal axons into the tectum. Two alleles of drg disrupt the layer-specific targeting of retinal axons. Three genes, fuzz, beyo and brek, are required for confinement of the tectal neuropil. Fasciculation within the optic tract and adhesion within the tectal neuropil are regulated by vrt, coma, bluk, clew and blin. The mutated genes are predicted to encode molecules essential for building the intricate neural architecture of the visual system.


Assuntos
Genes Reporter , Proteínas de Fluorescência Verde/genética , Retina/embriologia , Células Ganglionares da Retina/metabolismo , Colículos Superiores/embriologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Testes Genéticos/métodos , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Retina/anormalidades , Colículos Superiores/anormalidades , Fator de Transcrição Brn-3 , Fator de Transcrição Brn-3C , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Dev Biol ; 281(1): 53-65, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15848388

RESUMO

In a large-scale forward-genetic screen, we discovered that a limited number of genes are required for the regulation of retinal stem cells after embryogenesis in zebrafish. In 18 mutants out of almost 2000 F2 families screened, the eye undergoes normal embryonic development, but fails to continue growth from the ciliary marginal zone (CMZ), the post-embryonic stem-cell niche. Class I-A mutants (5 loci) display lower amounts of proliferation in the CMZ, while nearly all cells in the retina appear differentiated. Class I-B mutants (2 loci) have a reduced CMZ with a concomitant expansion in the retinal pigmented epithelium (RPE), suggesting a common post-embryonic stem cell is the source for these neighboring cell types. Class II encompasses three distinct types of mutants (11 loci) with expanded CMZ, in which the progenitor population is arrested in the cell cycle. We also show that in at least one combination, the reduced CMZ phenotype is genetically epistatic to the expanded CMZ phenotype, suggesting that Class I genes are more likely to affect the stem cells and Class II the progenitor cells. Finally, a comparative mapping analysis demonstrates that the new genes isolated do not correspond to genes previously implicated in stem-cell regulation. Our study suggests that embryonic and post-embryonic stem cells utilize separable genetic programs in the zebrafish retina.


Assuntos
Retina , Células-Tronco/fisiologia , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética , Animais , Forma Celular , Ligação Genética , Testes Genéticos , Mutação , Fenótipo , Retina/anormalidades , Retina/citologia , Retina/crescimento & desenvolvimento , Retina/fisiologia , Células-Tronco/citologia , Peixe-Zebra/crescimento & desenvolvimento
8.
Nat Neurosci ; 7(12): 1329-36, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15516923

RESUMO

The visual system adjusts its sensitivity to a wide range of light intensities. We report here that mutation of the zebrafish sdy gene, which encodes tyrosinase, slows down the onset of adaptation to bright light. When fish larvae were challenged with periods of darkness during the day, the sdy mutants required nearly an hour to recover optokinetic behavior after return to bright light, whereas wild types recovered within minutes. This behavioral deficit was phenocopied in fully pigmented fish by inhibiting tyrosinase and thus does not depend on the absence of melanin pigment in sdy. Electroretinograms showed that the dark-adapted retinal network recovers sensitivity to a pulse of light more slowly in sdy mutants than in wild types. This failure is localized in the retinal neural network, postsynaptic to photoreceptors. We propose that retinal pigment epithelium (which normally expresses tyrosinase) secretes a modulatory factor, possibly L-DOPA, which regulates light adaptation in the retinal circuitry.


Assuntos
Adaptação Ocular , Monofenol Mono-Oxigenase/fisiologia , Rede Nervosa/enzimologia , Estimulação Luminosa/métodos , Epitélio Pigmentado Ocular/enzimologia , Adaptação Ocular/genética , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Monofenol Mono-Oxigenase/biossíntese , Monofenol Mono-Oxigenase/genética , Mutação de Sentido Incorreto , Peixe-Zebra
9.
EMBO Rep ; 4(9): 894-9, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12947416

RESUMO

The vertebrate eye forms by specification of the retina anlage and subsequent morphogenesis of the optic vesicles, from which the neural retina differentiates. chokh (chk) mutant zebrafish lack eyes from the earliest stages in development. Marker gene analysis indicates that retinal fate is specified normally, but optic vesicle evagination and neuronal differentiation are blocked. We show that the chk gene encodes the homeodomain-containing transcription factor, Rx3. Loss of Rx3 function in another teleost,medaka, has also been shown to result in an eyeless phenotype. The medaka rx3 locus can fully rescue the zebrafish mutant phenotype. We provide evidence that the regulation of rx3 is evolutionarily conserved, whereas the downstream cascade contains significant differences in gene regulation. Thus, these mutations in orthologous genes allow us to study the evolution of vertebrate eye development at the molecular level.


Assuntos
Anormalidades do Olho/genética , Proteínas de Peixes/genética , Proteínas de Homeodomínio/genética , Peixe-Zebra/genética , Animais , Proteínas do Olho , Proteínas de Homeodomínio/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados , Mutação Puntual , Proteínas Repressoras , Retina/embriologia , Retina/metabolismo , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética , Proteína Homeobox SIX3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...