Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroimaging ; 34(3): 320-328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616297

RESUMO

BACKGROUND AND PURPOSE: The purpose of this study is to evaluate the feasibility of using 3-dimensional (3D) ultra-short echo time (UTE) radial imaging method for measurement of the permeability of the blood-brain barrier (BBB) to gadolinium-based contrast agent. In this study, we propose to use the golden-angle radial sparse parallel (GRASP) method with 3D center-out trajectories for UTE, hence named as 3D UTE-GRASP. We first examined the feasibility of using 3D UTE-GRASP dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) for differentiating subtle BBB disruptions induced by focused ultrasound (FUS). Then, we examined the BBB permeability changes in Alzheimer's disease (AD) pathology using Alzheimer's disease transgenic mice (5xFAD) at different ages. METHODS: For FUS experiments, we used four Sprague Dawley rats at similar ages where we compared BBB permeability of each rat receiving the FUS sonication with different acoustic power (0.4-1.0 MPa). For AD transgenic mice experiments, we included three 5xFAD mice (6, 12, and 16 months old) and three wild-type mice (4, 8, and 12 months old). RESULTS: The result from FUS experiments showed a progressive increase in BBB permeability with increase of acoustic power (p < .05), demonstrating the sensitivity of DCE-MRI method for detecting subtle changes in BBB disruption. Our AD transgenic mice experiments suggest an early BBB disruption in 5xFAD mice, which is further impaired with aging. CONCLUSION: The results in this study substantiate the feasibility of using the proposed 3D UTE-GRASP method for detecting subtle BBB permeability changes expected in neurodegenerative diseases, such as AD.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Meios de Contraste , Estudos de Viabilidade , Imageamento por Ressonância Magnética , Camundongos Transgênicos , Ratos Sprague-Dawley , Barreira Hematoencefálica/diagnóstico por imagem , Animais , Camundongos , Imageamento por Ressonância Magnética/métodos , Ratos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Permeabilidade Capilar/fisiologia , Imageamento Tridimensional/métodos
2.
Proc Natl Acad Sci U S A ; 119(15): e2113751119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394873

RESUMO

Although mammalian retinal ganglion cells (RGCs) normally cannot regenerate axons nor survive after optic nerve injury, this failure is partially reversed by inducing sterile inflammation in the eye. Infiltrative myeloid cells express the axogenic protein oncomodulin (Ocm) but additional, as-yet-unidentified, factors are also required. We show here that infiltrative macrophages express stromal cell­derived factor 1 (SDF1, CXCL12), which plays a central role in this regard. Among many growth factors tested in culture, only SDF1 enhances Ocm activity, an effect mediated through intracellular cyclic AMP (cAMP) elevation and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation. SDF1 deficiency in myeloid cells (CXCL12flx/flxLysM-Cre−/+ mice) or deletion of the SDF1 receptor CXCR4 in RGCs (intraocular AAV2-Cre in CXCR4flx/flx mice) or SDF1 antagonist AMD3100 greatly suppresses inflammation-induced regeneration and decreases RGC survival to baseline levels. Conversely, SDF1 induces optic nerve regeneration and RGC survival, and, when combined with Ocm/cAMP, SDF1 increases axon regeneration to levels similar to those induced by intraocular inflammation. In contrast to deletion of phosphatase and tensin homolog (Pten), which promotes regeneration selectively from αRGCs, SDF1 promotes regeneration from non-αRGCs and enables the latter cells to respond robustly to Pten deletion; however, SDF1 surprisingly diminishes the response of αRGCs to Pten deletion. When combined with inflammation and Pten deletion, SDF1 enables many RGCs to regenerate axons the entire length of the optic nerve. Thus, SDF1 complements the effects of Ocm in mediating inflammation-induced regeneration and enables different RGC subtypes to respond to Pten deletion.


Assuntos
Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Axônios/metabolismo , Quimiocina CXCL12/genética , Monócitos/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , PTEN Fosfo-Hidrolase/genética , Células Ganglionares da Retina/fisiologia
3.
Methods Mol Biol ; 2418: 53-61, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35119659

RESUMO

The ability to silence the expression of gene products in a chemically, spatially, and temporally specific manner in the brains of animals has enabled key breakthroughs in the field of behavioral neuroscience. Using this technique, estrogen receptor alpha (ERα) has been specifically implicated in a multitude of behaviors in mice, including sexual, aggressive, locomotor, and maternal behaviors, in a variety of brain regions, including the medial preoptic area, ventromedial hypothalamus, and amygdala. In this chapter, we describe the techniques involved in the generation of the small hairpin RNAs (shRNAs) specifically designed to silence ERα, the construction of the adeno-associated viral (AAV) vector for delivery of the shRNA, the procedures to confirm the silencing of ERα (in vitro and in vivo) and in vivo delivery of the shRNAs to the brains of animals.


Assuntos
Receptor alfa de Estrogênio , Roedores , Animais , Encéfalo/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Camundongos , Área Pré-Óptica/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Roedores/genética
5.
Mol Psychiatry ; 27(5): 2563-2579, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33931727

RESUMO

Heightened aggressive behavior is considered as one of the central symptoms of many neuropsychiatric disorders including autism, schizophrenia, and dementia. The consequences of aggression pose a heavy burden on patients and their families and clinicians. Unfortunately, we have limited treatment options for aggression and lack mechanistic insight into the causes of aggression needed to inform new efforts in drug discovery and development. Levels of proinflammatory cytokines in the periphery or cerebrospinal fluid were previously reported to correlate with aggressive traits in humans. However, it is still unknown whether cytokines affect brain circuits to modulate aggression. Here, we examined the functional role of interleukin 1ß (IL-1ß) in mediating individual differences in aggression using a resident-intruder mouse model. We found that nonaggressive mice exhibit higher levels of IL-1ß in the dorsal raphe nucleus (DRN), the major source of forebrain serotonin (5-HT), compared to aggressive mice. We then examined the effect of pharmacological antagonism and viral-mediated gene knockdown of the receptors for IL-1 within the DRN and found that both treatments consistently increased aggressive behavior of male mice. Aggressive mice also exhibited higher c-Fos expression in 5-HT neurons in the DRN compared to nonaggressive mice. In line with these findings, deletion of IL-1 receptor in the DRN enhanced c-Fos expression in 5-HT neurons during aggressive encounters, suggesting that modulation of 5-HT neuronal activity by IL-1ß signaling in the DRN controls expression of aggressive behavior.


Assuntos
Agressão , Núcleo Dorsal da Rafe , Interleucina-1beta , Serotonina , Agressão/fisiologia , Animais , Núcleo Dorsal da Rafe/metabolismo , Humanos , Individualidade , Interleucina-1beta/metabolismo , Masculino , Camundongos , Serotonina/metabolismo
6.
Nature ; 599(7886): 650-656, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732887

RESUMO

Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson's disease1. Yet, whether this change contributes to Parkinson's disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism-which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson's disease paradigm3,4.


Assuntos
Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Morte Celular , Dendritos/metabolismo , Dendritos/patologia , Modelos Animais de Doenças , Progressão da Doença , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Camundongos , Destreza Motora/efeitos dos fármacos , NADH Desidrogenase/deficiência , NADH Desidrogenase/genética , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Fenótipo , Substância Negra/citologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo
7.
World Neurosurg ; 145: 567-573, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348522

RESUMO

The ability of ultrasonography to safely penetrate deeply into the brain has made it an attractive technology for neurological applications for almost 1 century. Having recognized that converging ultrasound waves could deliver high levels of energy to a target and spare the overlying and surrounding brain, early applications used craniotomies to allow transducers to contact the brain or dural surface. The development of transducer arrays that could permit the transit of sufficient numbers of ultrasound waves to deliver high energies to a target, even with the loss of energy from the skull, has now resulted in clinical systems that can permit noninvasive focused ultrasound procedures that leave the skull intact. Another major milestone in the field was the marriage of focused ultrasonography with magnetic resonance thermometry. This provides real-time feedback regarding the level and location of brain tissue heating, allowing for precise elevation of temperatures within a desired target to lead to focal therapeutic lesions. The major clinical use of this technology, at present, has been limited to treatment of refractory essential tremor and parkinsonian tremor, although the first study of this approach had targeted sensory thalamus for refractory pain, and new targets and disease indications are under study. Finally, focused ultrasonography can also be used at a lower frequency and energy level when combined with intravenous microbubbles to create cavitations, which will open the blood-brain barrier rather than ablate tissue. In the present review, we have discussed the historical and scientific foundations and current clinical applications of magnetic resonance-guided focused ultrasonography and the genesis and background that led to the use of this technique for focal blood-brain barrier disruption.


Assuntos
Tremor Essencial/diagnóstico por imagem , Monitorização Neurofisiológica Intraoperatória/métodos , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/diagnóstico por imagem , Ultrassonografia de Intervenção/métodos , Tremor Essencial/cirurgia , Humanos , Doença de Parkinson/cirurgia , Termometria/métodos
8.
World Neurosurg ; 145: 574-580, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348523

RESUMO

Magnetic resonance-guided focused ultrasound is a powerful new technology that is enabling development of noninvasive applications for complex brain disorders. This is currently revolutionizing the treatment of tremor disorders, and a variety of experimental applications are under active investigation. To fully realize the potential of this disruptive technology, many challenges have been identified, some of which have been addressed and others remain to be solved. As an image-based technology, optimal intraoperative imaging can be difficult to achieve and several factors can influence the quality of these images. Technical issues with current devices can also limit the effective delivery of ultrasound technology to particular targets. While lesioning is the primary approved application of magnetic resonance-guided focused ultrasound at present, the ability to transient and precisely open the blood-brain barrier has the potential to clear brain pathologies and deliver restorative therapies, but this more experimental method presents unique difficulties to overcome. Finally, regulatory and reimbursement hurdles currently remain complex and continue to limit widespread application of even approved, effective applications. Here we review many of these challenges, discuss several solutions that have already been developed, and propose potential options for addressing some of these complexities in the future.


Assuntos
Encefalopatias/diagnóstico por imagem , Encefalopatias/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Monitorização Neurofisiológica Intraoperatória/métodos , Imageamento por Ressonância Magnética/métodos , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/cirurgia , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/cirurgia , Previsões , Ablação por Ultrassom Focalizado de Alta Intensidade/tendências , Humanos , Monitorização Neurofisiológica Intraoperatória/tendências , Imageamento por Ressonância Magnética/tendências , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/cirurgia , Crânio/diagnóstico por imagem , Crânio/cirurgia
9.
World Neurosurg ; 145: 581-589, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348524

RESUMO

Magnetic resonance-guided focused ultrasound (MRgFUS) is a cutting-edge technology that is changing the practice of movement disorders surgery. Given the noninvasive and innovative nature of this technology, there is great interest in expanding the use of MRgFUS to additional diseases and applications. Current approved applications target the motor thalamus to treat tremor, but clinical trials are exploring or plan to study noninvasive lesions with MRgFUS to ablate tumor cells in the brain as well as novel targets for movement disorders and brain regions associated with pain and epilepsy. Although there are additional potential indications for lesioning, the ability to improve function by destroying parts of the brain is still limited. However, MRgFUS can also be applied to a brain target after intravenous delivery of microbubbles to create cavitations and focally open the blood-brain barrier (BBB). This has already proven to be safe and technically feasible in human patients with Alzheimer's disease, and this action alone has potential to clear extracellular pathology associated with this and other neurodegenerative disorders. This also provides a foundation for noninvasive intravenous delivery of therapeutic molecules to precise brain targets after transient disruption of the BBB. Certain chemotherapies for brain tumors, immunotherapies, gene, and cell therapies are all examples of therapeutic or even restorative agents that normally will not enter the brain without direct infusion but which have been shown in preclinical studies to effectively traverse the BBB after transient disruption with MRgFUS. Here we will review these novel applications of MRgFUS to provide an overview of the extraordinary potential of this technology to expand future neurosurgical treatments of brain diseases.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/cirurgia , Terapias em Estudo/métodos , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade/tendências , Humanos , Imageamento por Ressonância Magnética/tendências , Microbolhas/uso terapêutico , Microbolhas/tendências , Terapias em Estudo/tendências
10.
Behav Brain Res ; 367: 128-142, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30928462

RESUMO

Estrogens receptors (ER) are involved in several sociosexual behaviors and fear responses. In particular, the ERα is important for sexual behaviors, whereas ERß modulates anxiolytic responses. Using shRNA directed either against the ERα or the ERß RNAs (or containing luciferase control) encoded within an adeno-associated viral vector, we silenced these receptors in the ventromedial nucleus of the hypothalamus (VMN) and the central amygdala (CeA). We exposed ovariectomized female rats, sequentially treated with estradiol benzoate and progesterone, to five stimuli, previously reported to elicit positive and negative affect. The subjects were housed in groups of 4 females and 3 males in a seminatural environment for several days before hormone treatment. We analyzed the frequency of a large number of behavior patterns. In addition, we performed analyses of co-occurrence in order to detect changes in the structure of behavior after infusion of the vectors. Silencing the ERα in the VMN disrupted lordosis and showed some anxiolytic properties in aversive situations, whereas silencing of the ERß in this structure had no effect. This was also the case after silencing the ERα in the CeA. Silencing of the ERß in this structure increased risk assessment, an expression of anxiety, and increased olfactory exploration of the environment. We hypothesize that the ERß in the CeA has an important role in the well-established anxiolytic effects of estrogens, and that it may modulate arousal level. Furthermore, it seems that the ERα in the VMN is anxiogenic in aversive or threatening situations, in agreement with other studies.


Assuntos
Nível de Alerta/fisiologia , Comportamento Animal/fisiologia , Núcleo Central da Amígdala/fisiologia , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/fisiologia , Medo/fisiologia , Comportamento Social , Núcleo Hipotalâmico Ventromedial/fisiologia , Animais , Núcleo Central da Amígdala/metabolismo , Feminino , Masculino , Ratos , Comportamento Sexual Animal/fisiologia , Núcleo Hipotalâmico Ventromedial/metabolismo
11.
J Neurosurg ; 130(3): 989-998, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29701544

RESUMO

OBJECTIVE: Surgical infusion of gene therapy vectors has provided opportunities for biological manipulation of specific brain circuits in both animal models and human patients. Transient focal opening of the blood-brain barrier (BBB) by MR-guided focused ultrasound (MRgFUS) raises the possibility of noninvasive CNS gene therapy to target precise brain regions. However, variable efficiency and short follow-up of studies to date, along with recent suggestions of the potential for immune reactions following MRgFUS BBB disruption, all raise questions regarding the viability of this approach for clinical translation. The objective of the current study was to evaluate the efficiency, safety, and long-term stability of MRgFUS-mediated noninvasive gene therapy in the mammalian brain. METHODS: Focused ultrasound under the control of MRI, in combination with microbubbles consisting of albumin-coated gas microspheres, was applied to rat striatum, followed by intravenous infusion of an adeno-associated virus serotype 1/2 (AAV1/2) vector expressing green fluorescent protein (GFP) as a marker. Following recovery, animals were followed from several hours up to 15 months. Immunostaining for GFP quantified transduction efficiency and stability of expression. Quantification of neuronal markers was used to determine histological safety over time, while inflammatory markers were examined for evidence of immune responses. RESULTS: Transitory disruption of the BBB by MRgFUS resulted in efficient delivery of the AAV1/2 vector to the targeted rodent striatum, with 50%-75% of striatal neurons transduced on average. GFP transgene expression appeared to be stable over extended periods of time, from 2 weeks to 6 months, with evidence of ongoing stable expression as long as 16 months in a smaller cohort of animals. No evidence of substantial toxicity, tissue injury, or neuronal loss was observed. While transient inflammation from BBB disruption alone was noted for the first few days, consistent with prior observations, no evidence of brain inflammation was observed from 2 weeks to 6 months following MRgFUS BBB opening, despite delivery of a virus and expression of a foreign protein in target neurons. CONCLUSIONS: This study demonstrates that transitory BBB disruption using MRgFUS can be a safe and efficient method for site-specific delivery of viral vectors to the brain, raising the potential for noninvasive focal human gene therapy for neurological disorders.


Assuntos
Encéfalo/diagnóstico por imagem , Técnicas de Transferência de Genes , Terapia Genética/métodos , Animais , Barreira Alveolocapilar/patologia , Encéfalo/patologia , Dependovirus/imunologia , Técnicas de Transferência de Genes/efeitos adversos , Terapia Genética/efeitos adversos , Vetores Genéticos/administração & dosagem , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Inflamação/patologia , Imageamento por Ressonância Magnética , Masculino , Doenças do Sistema Nervoso/terapia , Ratos , Ratos Sprague-Dawley , Transgenes/genética , Ultrassonografia
12.
Neurobiol Dis ; 82: 487-494, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26232589

RESUMO

Phosphatase and Tensin homolog deleted on chromosome 10 (PTEN) is a dual lipid-protein phosphatase known primarily as a growth preventing tumor suppressor. PTEN is also expressed in neurons, and pathways modulated by PTEN can influence neuronal function. Here we report a novel function of PTEN as a regulator of striatal dopamine signaling in a model of Parkinson's disease (PD). Blocking PTEN expression with an adeno-associated virus (AAV) vector expressing a small hairpin RNA (shRNA) resulted in reduced responses of cultured striatal neurons to dopamine, which appeared to be largely due to reduction in D2 receptor activation. Co-expression of shRNA-resistant wild-type and mutant forms of PTEN indicated that the lipid-phosphatase activity was essential for this effect. In both normal and Parkinsonian rats, inhibition of striatal PTEN in vivo resulted in motor dysfunction and impaired responses to dopamine, particularly D2 receptor agonists. Expression of PTEN mutants confirmed the lipid-phosphatase activity as critical, while co-expression of a dominant-negative form of Akt overcame the PTEN shRNA effect. These results identify PTEN as a key mediator of striatal responses to dopamine, and suggest that drugs designed to potentiate PTEN expression or activity, such as cancer chemotherapeutics, may also be useful for improving striatal responses to dopamine in conditions of dopamine depletion such as PD. This also suggests that strategies which increase Akt or decrease PTEN expression or function, such as growth factors to prevent neuronal death, may have a paradoxical effect on neurological functioning by inhibiting striatal responses to dopamine.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Atividade Motora/fisiologia , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Dependovirus , Agonistas de Dopamina/farmacologia , Vetores Genéticos , Masculino , Atividade Motora/efeitos dos fármacos , Mutação , Neurônios/efeitos dos fármacos , PTEN Fosfo-Hidrolase/genética , Transtornos Parkinsonianos/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Ratos Sprague-Dawley , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo
13.
Neuron ; 83(1): 178-88, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24991961

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The debilitating choreic movements that plague HD patients have been attributed to striatal degeneration induced by the loss of cortically supplied brain-derived neurotrophic factor (BDNF). Here, we show that in mouse models of early symptomatic HD, BDNF delivery to the striatum and its activation of tyrosine-related kinase B (TrkB) receptors were normal. However, in striatal neurons responsible for movement suppression, TrkB receptors failed to properly engage postsynaptic signaling mechanisms controlling the induction of potentiation at corticostriatal synapses. Plasticity was rescued by inhibiting p75 neurotrophin receptor (p75NTR) signaling or its downstream target phosphatase-and-tensin-homolog-deleted-on-chromosome-10 (PTEN). Thus, corticostriatal synaptic dysfunction early in HD is attributable to a correctable defect in the response to BDNF, not its delivery.


Assuntos
Córtex Cerebral/fisiopatologia , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Doença de Huntington/fisiopatologia , Receptor trkB/deficiência , Transdução de Sinais/genética , Animais , Córtex Cerebral/patologia , Corpo Estriado/patologia , Técnicas de Introdução de Genes , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Receptor trkB/antagonistas & inibidores , Receptor trkB/fisiologia
14.
J Comp Neurol ; 522(5): 1171-90, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24264880

RESUMO

Mutations in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) are implicated in neuropsychiatric disorders including autism. Previous studies report that PTEN knockdown in neurons in vivo leads to increased spine density and synaptic activity. To better characterize synaptic changes in neurons lacking PTEN, we examined the effects of shRNA knockdown of PTEN in basolateral amygdala neurons on synaptic spine density and morphology by using fluorescent dye confocal imaging. Contrary to previous studies in the dentate gyrus, we find that knockdown of PTEN in basolateral amygdala leads to a significant decrease in total spine density in distal dendrites. Curiously, this decreased spine density is associated with increased miniature excitatory postsynaptic current frequency and amplitude, suggesting an increase in number and function of mature spines. These seemingly contradictory findings were reconciled by spine morphology analysis demonstrating increased mushroom spine density and size with correspondingly decreased thin protrusion density at more distal segments. The same analysis of PTEN conditional deletion in the dentate gyrus demonstrated that loss of PTEN does not significantly alter total density of dendritic protrusions in the dentate gyrus, but does decrease thin protrusion density and increases density of more mature mushroom spines. These findings suggest that, contrary to previous reports, PTEN knockdown may not induce de novo spinogenesis, but instead may increase synaptic activity by inducing morphological and functional maturation of spines. Furthermore, behavioral analysis of basolateral amygdala PTEN knockdown suggests that these changes limited only to the basolateral amygdala complex may not be sufficient to induce increased anxiety-related behaviors.


Assuntos
Tonsila do Cerebelo/citologia , Espinhas Dendríticas/fisiologia , Hipocampo/citologia , Mutação/genética , Neurônios/ultraestrutura , PTEN Fosfo-Hidrolase/genética , Animais , Ansiedade/genética , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Locomoção/genética , Camundongos , Camundongos Transgênicos , Potenciais Pós-Sinápticos em Miniatura/genética , Proteína Oncogênica v-akt/metabolismo , Fosfopiruvato Hidratase/metabolismo , Reflexo de Sobressalto/genética , Transdução Genética
15.
Sci Transl Med ; 2(54): 54ra76, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20962330

RESUMO

The etiology of major depression remains unknown, but dysfunction of serotonergic signaling has long been implicated in the pathophysiology of this disorder. p11 is an S100 family member recently identified as a serotonin 1B [5-hydroxytryptamine 1B (5-HT(1B))] and serotonin 4 (5-HT(4)) receptor-binding protein. Mutant mice in which p11 is deleted show depression-like behaviors, suggesting that p11 may be a mediator of affective disorder pathophysiology. Using somatic gene transfer, we have now identified the nucleus accumbens as a key site of p11 action. Reduction of p11 with adeno-associated virus (AAV)-mediated RNA interference in the nucleus accumbens, but not in the anterior cingulate, of normal adult mice resulted in depression-like behaviors nearly identical to those seen in p11 knockout mice. Restoration of p11 expression specifically in the nucleus accumbens of p11 knockout mice normalized depression-like behaviors. Human nucleus accumbens tissue shows a significant reduction of p11 protein in depressed patients when compared to matched healthy controls. These results suggest that p11 loss in rodent and human nucleus accumbens may contribute to the pathophysiology of depression. Normalization of p11 expression within this brain region with AAV-mediated gene therapy may be of therapeutic value.


Assuntos
Anexina A2/genética , Depressão/terapia , Terapia Genética , Núcleo Accumbens/metabolismo , Proteínas S100/genética , Animais , Dependovirus/genética , Vetores Genéticos , Camundongos
16.
PLoS One ; 4(2): e4597, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19242547

RESUMO

Mutations in PTEN induced kinase 1 (PINK1), a mitochondrial Ser/Thr kinase, cause an autosomal recessive form of Parkinson's disease (PD), PARK6. Here, we report that PINK1 exists as a dimer in mitochondrial protein complexes that co-migrate with respiratory chain complexes in sucrose gradients. PARK6 related mutations do not affect this dimerization and its associated complexes. Using in vitro cell culture systems, we found that mutant PINK1 or PINK1 knock-down caused deficits in mitochondrial respiration and ATP synthesis. Furthermore, proteasome function is impaired with a loss of PINK1. Importantly, these deficits are accompanied by increased alpha-synclein aggregation. Our results indicate that it will be important to delineate the relationship between mitochondrial functional deficits, proteasome dysfunction and alpha-synclein aggregation.


Assuntos
Mitocôndrias/patologia , Complexo de Endopeptidases do Proteassoma/deficiência , Proteínas Quinases/genética , alfa-Sinucleína/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Mutação , Fosforilação Oxidativa , Doença de Parkinson
17.
Proc Natl Acad Sci U S A ; 104(46): 18292-6, 2007 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-17984058

RESUMO

We have theorized that large neurons in the ventral and medial reticular formation of the medulla are critical for both autonomic and cortical arousal. To test this theory, we anesthetized rats with urethane, lowered concentric bipolar stimulating electrodes into the medullary reticular formation, and implanted electroencephalogram (EEG) and ECG recording electrodes. We stimulated in the medulla with pulse frequencies ranging from 50 to 300 Hz while recording cortical EEG and ECG. These female rats were ovariectomized, and one subgroup was administered estradiol. Electrical stimulation at either 200 or 300 Hz among the large medullary reticular neurons in nucleus paragigantocellularis (PGi) caused a significant reduction in the portion of the EEG power spectrum represented by delta-waves (0.1-4 Hz) and -waves (4.1-8 Hz). Correspondingly, there were increases in gamma-wave power (22-50 Hz), especially when using 300 Hz. Stimulation at

Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Bulbo/fisiologia , Animais , Estimulação Elétrica , Estradiol/administração & dosagem , Feminino , Ovariectomia , Ratos
18.
Proc Natl Acad Sci U S A ; 103(42): 15710-5, 2006 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-17030790

RESUMO

We investigated the effects of beta-estradiol on the locomotor behavior of female mice in a radial maze. Data comprising the total distance traveled during each arm entry were obtained from video records of six consecutive daily recording sessions. Distributions of these data were bimodal for both ovariectomized control and beta-estradiol-treated ovariectomized subjects. Data were fit with the sum of two gamma probability distributions. Three parameters of the analytic fits were useful for quantifying the effect of beta-estradiol on locomotor behavior: (i) the sampling distance (median of the total distance traveled during each arm entry in the short-distance peak of a bimodal distribution), (ii) the committed distance (median of the total per-arm-entry distance traveled in the long-distance peak), and (iii) the partition distance (distance represented by the minimum between the two peaks). Analysis showed that for sampling-distance arm entries beta-estradiol typically had little if any significant effect on female locomotor behavior, whereas it significantly increased the total distance traveled during committed-distance arm entries on the first 2 days of exposure to the empty maze. beta-Estradiol also increased the ability of females to discriminate between empty maze arms and arms that contained intact or castrated male mice and partially prevented loss of this capacity after removal of the males.


Assuntos
Estradiol/farmacologia , Aprendizagem em Labirinto/fisiologia , Atividade Motora/efeitos dos fármacos , Animais , Castração , Interpretação Estatística de Dados , Feminino , Masculino , Matemática , Camundongos , Atividade Motora/fisiologia , Ovariectomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...