Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 98(10): 107401, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17358564

RESUMO

A key to ultralong electron spin memory in quantum dots (QDs) at zero magnetic field is the polarization of the nuclei, such that the electron spin is stabilized along the average nuclear magnetic field. We demonstrate that spin-polarized electrons in n-doped (In,Ga)As/GaAs QDs align the nuclear field via the hyperfine interaction. A feedback onto the electrons occurs, leading to stabilization of their polarization due to formation of a nuclear spin polaron [I. A. Merkulov, Phys. Solid State 40, 930 (1998)]. Spin depolarization of both systems is consequently greatly reduced, and spin memory of the coupled electron-nuclear spin system is retained over 0.3 sec at temperature of 2 K.

2.
Science ; 313(5785): 341-5, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16857937

RESUMO

The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.

3.
Phys Rev Lett ; 96(22): 227401, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16803342

RESUMO

Electron spin coherence has been generated optically in n-type modulation doped (In,Ga)As/GaAs quantum dots (QDs) which contain on average a single electron per dot. The coherence arises from resonant excitation of the QDs by circularly polarized laser pulses, creating a coherent superposition of an electron and a trion. Time dependent Faraday rotation is used to probe the spin precession of the optically oriented electrons about a transverse magnetic field. The coherence generation can be controlled by pulse intensity, being most efficient for (2n+1)pi pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...