Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202400669, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924194

RESUMO

Supported metal single atom catalysis is a dynamic research area in catalysis science combining the advantages of homogeneous and heterogeneous catalysis. Understanding the interactions between metal single atoms and the support constitutes a challenge facing the development of such catalysts, since these interactions are essential in optimizing the catalytic performance. For conventional carbon supports, two types of surfaces can contribute to single atom stabilization: the basal planes and the prismatic surface; both of which can be decorated by defects and surface oxygen groups. To date, most studies on carbon-supported single atom catalysts focused on nitrogen-doped carbons, which, unlike classic carbon materials, have a fairly well-defined chemical environment. Herein we report the synthesis, characterization and modeling of rhodium single atom catalysts supported on carbon materials presenting distinct concentrations of surface oxygen groups and basal/prismatic surface area. The influence of these parameters on the speciation of the Rh species, their coordination and ultimately on their catalytic performance in hydrogenation and hydroformylation reactions is analyzed. The results obtained show that catalysis itself is an interesting tool for the fine characterization of these materials, for which the detection of small quantities of metal clusters remains a challenge, even when combining several cutting-edge analytical methods.

2.
Small ; : e2310562, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431932

RESUMO

In recent years, there has been a substantial surge in the investigation of transition-metal dichalcogenides such as MoS2 as a promising electrochemical catalyst. Inspired by denitrification enzymes such as nitrate reductase and nitrite reductase, the electrochemical nitrate reduction catalyzed by MoS2 with varying local atomic structures is reported. It is demonstrated that the hydrothermally synthesized MoS2 containing sulfur vacancies behaves as promising catalysts for electrochemical denitrification. With copper doping at less than 9% atomic ratio, the selectivity of denitrification to dinitrogen in the products can be effectively improved. X-ray absorption characterizations suggest that two sulfur vacancies are associated with one copper dopant in the MoS2 skeleton. DFT calculation confirms that copper dopants replace three adjacent Mo atoms to form a trigonal defect-enriched region, introducing an exposed Mo reaction center that coordinates with Cu atom to increase N2 selectivity. Apart from the higher activity and selectivity, the Cu-doped MoS2 also demonstrates remarkably improved tolerance toward oxygen poisoning at high oxygen concentration. Finally, Cu-doped MoS2 based catalysts exhibit very low specific energy consumption during the electrochemical denitrification process, paving the way for potential scale-up operations.

3.
J Phys Chem Lett ; 15(5): 1521-1528, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38299494

RESUMO

Stabilization of ions in exotic oxidation states is beneficial for the development of new materials for green energy technologies. Exotic Mn1+ was proposed to play a role in the function of sodium-based Prussian blue analogues (PBA) batteries, a highly sought-out technology for industrial energy storage. Here, we report the detailed electronic structure characterization of uncharged and charged sodium-based manganese hexacyanomanganate anodes via Mn K-edge X-ray absorption spectroscopy (XAS), Kß nonresonant X-ray emission (XES), and resonant inelastic X-ray scattering (RIXS). The latter allowed us to obtain site-selective XANES information about two distinct Mn centers. The obtained spectroscopic data represent the first electronic structure characterization of low-spin Mn1+ using hard X-ray RIXS and XES and allowed us to confirm its role in anode reduction. Our experimental approach can be expanded to analysis of analogues with other 3d transition metals broadening the application of exotic ionic states in materials engineering.

4.
Adv Mater ; 36(19): e2311341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332453

RESUMO

Use of single-atom catalysts (SACs) has become a popular strategy for tuning activity and selectivity toward specific pathways. However, conventional SAC synthesis methods require high temperatures and pressures, complicated procedures, and expensive equipment. Recently, underpotential deposition (UPD) has been investigated as a promising alternative, yielding high-loading SAC electrodes under ambient conditions and within minutes. Yet only few studies have employed UPD to synthesize SACs, and all have been limited to UPD of Cu. In this work, a flexible UPD approach for synthesis of mono- and bi-metallic Cu, Fe, Co, and Ni SACs directly on oxidized, commercially available carbon electrodes is reported. The UPD mechanism is investigated using in situ X-ray absorption spectroscopy and, finally, the catalytic performance of a UPD-synthesized Co SAC is assessed for electrochemical nitrate reduction to ammonia. The findings expand upon the usefulness and versatility of UPD for SAC synthesis, with hopes of enabling future research toward realization of fast, reliable, and fully electrified SAC synthesis processes.

5.
ACS Energy Lett ; 8(11): 4746-4752, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37969250

RESUMO

Electrochemical nitrate reduction (NO3 RR) has attracted attention as an emerging approach to mitigate nitrate pollution in groundwater. Here, we report that a highly ordered PdCu alloy-based electrocatalyst exhibits selective (91% N2), stable (480 h), and near complete (94%) removal of nitrate without loss of catalyst. In situ and ex situ XAS provide evidence that structural ordering between Pd and Cu improves long-term catalyst stability during NO3RR. In contrast, we also report that a disordered PdCu alloy-based electrocatalyst exhibits non-selective (44% N2 and 49% NH4+), unstable, and incomplete removal of nitrate. The copper within disordered PdCu alloy is vulnerable to accepting electrons from hydrogenated neighboring Pd atoms. This resulted in copper catalyst losses which were 10× greater than that of the ordered catalyst. The design of stable catalysts is imperative for water treatment because loss of the catalyst adds to the system cost and environmental impacts.

6.
Nat Commun ; 14(1): 7514, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980344

RESUMO

Balancing kinetics, a crucial priority in catalysis, is frequently achieved by sacrificing activity of elementary steps to suppress side reactions and enhance catalyst stability. Dry reforming of methane (DRM), a process operated at high temperature, usually involves fast C-H activation but sluggish carbon removal, resulting in coke deposition and catalyst deactivation. Studies focused solely on catalyst innovation are insufficient in addressing coke formation efficiently. Herein, we develop coke-free catalysts that balance kinetics of elementary steps for overall thermodynamics optimization. Beginning from a highly active cobalt aluminum oxide (CoAl2O4) catalyst that is susceptible to severe coke formation, we substitute aluminum (Al) with gallium (Ga), reporting a CoAl0.5Ga1.5O4-R catalyst that performs DRM stably over 1000 hours without observable coke deposition. We find that Ga enhances DRM stability by suppressing C-H activation to balance carbon removal. A series of coke-free DRM catalysts are developed herein by partially substituting Al from CoAl2O4 with other metals.

7.
J Synchrotron Radiat ; 30(Pt 5): 923-933, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526993

RESUMO

The processing and analysis of synchrotron data can be a complex task, requiring specialized expertise and knowledge. Our previous work addressed the challenge of X-ray emission spectrum (XES) data processing by developing a standalone application using unsupervised machine learning. However, the task of analyzing the processed spectra remains another challenge. Although the non-resonant Kß XES of 3d transition metals are known to provide electronic structure information such as oxidation and spin state, finding appropriate parameters to match experimental data is a time-consuming and labor-intensive process. Here, a new XES data analysis method based on the genetic algorithm is demonstrated, applying it to Mn, Co and Ni oxides. This approach is also implemented as a standalone application, Argonne X-ray Emission Analysis 2 (AXEAP2), which finds a set of parameters that result in a high-quality fit of the experimental spectrum with minimal intervention. AXEAP2 is able to find a set of parameters that reproduce the experimental spectrum, and provide insights into the 3d electron spin state, 3d-3p electron exchange force and Kß emission core-hole lifetime.

8.
Environ Sci Technol ; 57(36): 13681-13690, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37650677

RESUMO

Here, we investigate the stability and performance of single-atom Pd on TiO2 for the selective dechlorination of 4-chlorophenol. A challenge inherent to single atoms is their high surface free energy, which results in a tendency for the surface migration and aggregation of metal atoms. This work evaluates various factors affecting the stability of Pd single-atoms, including atomic dispersion, coordination environment, and substrate properties, under reductive aqueous conditions. The transition from single atoms to clusters vastly enhanced dechlorination kinetics without diminishing carbon-chlorine bond selectivity. X-ray absorption spectroscopy analysis using both in situ and ex situ conditions followed the dynamic transformation of single atoms into amorphous clusters, which consist of a unique unsaturated coordination environment and few nanometer diameter. The intricate relationship between stability and performance underscores the vital role of detailed characterization to properly determine the true active species for dehalogenation reactions.


Assuntos
Carbono , Paládio , Cloretos , Cloro , Cinética
9.
ACS Omega ; 8(27): 24673-24679, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37457454

RESUMO

Understanding and controlling the chemical processes between molten salts and alloys is vital for the safe operation of molten-salt nuclear reactors. Corrosion processes in molten salts are highly dependent on the redox potential of the solution that changes with the presence of fission and corrosion processes, and as such, reactor designers develop electrochemical methods to monitor the salt. However, electrochemical techniques rely on the deconvolution of broad peaks, a process that may be imprecise in the presence of multiple species that emerge during reactor operation. Here, we describe in situ measurements of the concentration and chemical state of corrosion products in molten FLiNaK (eutectic mixture of LiF-NaK-KF) by high-resolution X-ray absorption spectroscopy. We placed a NiCr foil in molten FLiNaK and found the presence of both Ni2+ ions and metallic Ni in the melt, which we attribute to the foil disintegration due to Cr dealloying.

10.
ACS Catal ; 13(10): 6804-6812, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37234352

RESUMO

The occurrence of high concentrations of nitrate in various water resources is a significant environmental and human health threat, demanding effective removal technologies. Single atom alloys (SAAs) have emerged as a promising bimetallic material architecture in various thermocatalytic and electrocatalytic schemes including nitrate reduction reaction (NRR). This study suggests that there exists a stark contrast between thermocatalytic (T-NRR) and electrocatalytic (E-NRR) pathways that resulted in dramatic differences in SAA performances. Among Pd/Cu nanoalloys with varying Pd-Cu ratios from 1:100 to 100:1, Pd/Cu(1:100) SAA exhibited the greatest activity (TOFPd = 2 min-1) and highest N2 selectivity (94%) for E-NRR, while the same SAA performed poorly for T-NRR as compared to other nanoalloy counterparts. DFT calculations demonstrate that the improved performance and N2 selectivity of Pd/Cu(1:100) in E-NRR compared to T-NRR originate from the higher stability of NO3* in electrocatalysis and a lower N2 formation barrier than NH due to localized pH effects and the ability to extract protons from water. This study establishes the performance and mechanistic differences of SAA and nanoalloys for T-NRR versus E-NRR.

11.
Proc Natl Acad Sci U S A ; 120(9): e2216879120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802414

RESUMO

Atomic dispersion of metal catalysts on a substrate accounts for the increased atomic efficiency of single-atom catalysts (SACs) in various catalytic schemes compared to the nanoparticle counterparts. However, lacking neighboring metal sites has been shown to deteriorate the catalytic performance of SACs in a few industrially important reactions, such as dehalogenation, CO oxidation, and hydrogenation. Metal ensemble catalysts (Mn), an extended concept to SACs, have emerged as a promising alternative to overcome such limitation. Inspired by the fact that the performance of fully isolated SACs can be enhanced by tailoring their coordination environment (CE), we here evaluate whether the CE of Mn can also be manipulated in order to enhance their catalytic activity. We synthesized a set of Pd ensembles (Pdn) on doped graphene supports (Pdn/X-graphene where X = O, S, B, and N). We found that introducing S and N onto oxidized graphene modifies the first shell of Pdn converting Pd-O to Pd-S and Pd-N, respectively. We further found that the B dopant significantly affected the electronic structure of Pdn by serving as an electron donor in the second shell. We examined the performance of Pdn/X-graphene toward selective reductive catalysis, such as bromate reduction, brominated organic hydrogenation, and aqueous-phase CO2 reduction. We observed that Pdn/N-graphene exhibited superior performance by lowering the activation energy of the rate-limiting step, i.e., H2 dissociation into atomic hydrogen. The results collectively suggest controlling the CE of SACs in an ensemble configuration is a viable strategy to optimize and enhance their catalytic performance.

12.
Nanotechnology ; 34(12)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36538812

RESUMO

Discovery of structure-property relationships in thin film alloys of complex metal oxides enabled by high-throughput materials synthesis and characterization facilities is demonstrated here with a case-study. Thin films of binary transition metal oxides (Ti-Zn) are prepared by pulsed laser deposition with continuously varying Ti:Zn ratio, creating combinatorial samples for exploration of the properties of this material family. The atomic structure and electronic properties are probed by spatially resolved techniques including x-ray absorption near edge structures (XANES) and x-ray fluorescence (XRF) at the Ti and Zn K-edge, x-ray diffraction, and spectroscopic ellipsometry. The observed properties as a function of Ti:Zn ratio are resolved into mixtures of five distinguishable phases by deploying multivariate curve resolution analysis on the XANES spectral series, under constraints set by results from the other characterization techniques. First-principles computations based on density function theory connect the observed properties of each distinct phase with structural and spectral characteristics of crystalline polymorphs of Ti-Zn oxide. Continuous tuning of the optical absorption edge as a function of Ti:Zn ratio, including the unusual observation of negative optical bowing, exemplifies a functional property of the film correlated to the phase evolution.

13.
Inorg Chem ; 61(34): 13586-13590, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35972888

RESUMO

We report on the giant anisotropy found in the thermoelectric power factor (S2σ) of marcasite structure-type PtSb1.4Sn0.6 single crystal. PtSb1.4Sn0.6, synthesized using an ambient pressure flux growth method upon mixing Sb and Sn on the same atomic site, is a new phase different from both PtSb2 and PtSn2, which crystallize in the cubic Pa3̅ pyrite and Fm3̅m fluorite unit cell symmetry, respectively. The large difference in S2σ for heat flow applied along different principal directions of the orthorhombic unit cell stems mostly from anisotropic Seebeck coefficients.

14.
ACS Nano ; 16(8): 13134-13143, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35960957

RESUMO

Two-dimensional magnetic materials (2DMMs) are significant not only for studies on the nature of 2D long-range magnetic order but also for future spintronic devices. Of particular interest are 2DMMs where spins can be manipulated by electrical conduction. Whereas Cr2Si2Te6 exhibits magnetic order in few-layer crystals, its large band gap inhibits electronic conduction. Here we show that the defect-induced short-range crystal order in Cr2Si2Te6, on the length scale below 0.6 nm, induces a substantially reduced band gap and robust semiconducting behavior down to 2 K that turns to metallic above 10 GPa. Our results will be helpful in designing conducting states in 2DMMs and call for spin-resolved measurement of the electronic structure in exfoliated ultrathin crystals.

15.
Nanomaterials (Basel) ; 12(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35889588

RESUMO

Mixed-valence cerium oxide nanoparticles (nanoceria) have been investigated with pronounced interest due to a wide range of biomedical and industrial applications that arises from its remarkable redox catalytic properties. However, there is no understanding of how to control the formation of these two types of nanoceria to obtain Ce3+/Ce4+ ratios required in various applications. In this work, using a soluble borate glass, nanoceria with specific ratios of Ce3+/Ce4+ are created and extracted via controlled glass-melting parameters. Glass embedded with nanoceria as well as nanoceria extracted from the glass were studied via XANES and fitted with the Multivariate Curve Resolution (MCR) technique to calculate the ratio of Ce3+/Ce4+. Results show that mixed-valence nanoceria with specific ratios are hermetically sealed within the glass for long durations. When the glass dissolves, the mixed-valence nanoceria are released, and the extracted nanoceria have unchanged Ce3+/Ce4+ ratios. Furthermore, TEM investigation on released nanoceria show that the nanoceria consist of several different structures. Although nanocrystal structures of Ce7O12, Ce11O20, and Ce2O3 contribute to the reduced state, a new quasi-stable phase of CeO1.66 has been observed as well.

16.
J Synchrotron Radiat ; 29(Pt 4): 1095-1106, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787577

RESUMO

The Inner Shell Spectroscopy (ISS) beamline on the 8-ID station at the National Synchrotron Light Source II (NSLS-II), Upton, NY, USA, is a high-throughput X-ray absorption spectroscopy beamline designed for in situ, operando, and time-resolved material characterization using high monochromatic flux and scanning speed. This contribution discusses the technical specifications of the beamline in terms of optics, heat load management, monochromator motion control, and data acquisition and processing. Results of the beamline tests demonstrating the quality of the data obtainable on the instrument, possible energy scanning speeds, as well as long-term beamline stability are shown. The ability to directly control the monochromator trajectory to define the acquisition time for each spectral region is highlighted. Examples of studies performed on the beamline are presented. The paper is concluded with a brief outlook for future developments.

17.
Inorg Chem ; 61(29): 11036-11045, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35830279

RESUMO

Connections between crystal chemistry and critical temperature Tc have been in the focus of superconductivity, one of the most widely studied phenomena in physics, chemistry, and materials science alike. In most Fe-based superconductors, materials chemistry and physics conspire so that Tc correlates with the average anion height above the Fe plane, i.e., with the geometry of the FeAs4 or FeCh4 (Ch = Te, Se, or S) tetrahedron. By synthesizing Fe1-ySe1-xSx (0 ≤ x ≤ 1; y ≤ 0.1), we find that in alloyed crystals Tc is not correlated with the anion height like it is for most other Fe superconductors. Instead, changes in Tc(x) and tetragonal-to-orthorhombic (nematic) transition Ts(x) upon cooling are correlated with disorder in Fe vibrations in the direction orthogonal to Fe planes, along the crystallographic c-axis. The disorder stems from the random nature of S substitution, causing deformed Fe(Se,S)4 tetrahedra with different Fe-Se and Fe-S bond distances. Our results provide evidence of Tc and Ts suppression by disorder in anion height. The connection to local crystal chemistry may be exploited in computational prediction of new superconducting materials with FeSe/S building blocks.

18.
Front Chem ; 10: 873462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518718

RESUMO

A capacitance increase phenomenon is observed for MoO3 electrodes synthesized via a sol-gel process in the presence of dopamine hydrochloride (Dopa HCl) as compared to α-MoO3 electrodes in 5M ZnCl2 aqueous electrolyte. The synthesis approach is based on a hydrogen peroxide-initiated sol-gel reaction to which the Dopa HCl is added. The powder precursor (Dopa)xMoOy, is isolated from the metastable gel using freeze-drying. Hydrothermal treatment (HT) of the precursor results in the formation of MoO3 accompanied by carbonization of the organic molecules; designated as HT-MoO3/C. HT of the precipitate formed in the absence of dopamine in the reaction produced α-MoO3, which was used as a reference material in this study (α-MoO3-ref). Scanning electron microscopy (SEM) images show a nanobelt morphology for both HT-MoO3/C and α-MoO3-ref powders, but with distinct differences in the shape of the nanobelts. The presence of carbonaceous content in the structure of HT-MoO3/C is confirmed by FTIR and Raman spectroscopy measurements. X-ray diffraction (XRD) and Rietveld refinement analysis demonstrate the presence of α-MoO3 and h-MoO3 phases in the structure of HT-MoO3/C. The increased specific capacitance delivered by the HT-MoO3/C electrode as compared to the α-MoO3-ref electrode in 5M ZnCl2 electrolyte in a -0.25-0.70 V vs. Ag/AgCl potential window triggered a more detailed study in an expanded potential window. In the 5M ZnCl2 electrolyte at a scan rate of 2 mV s-1, the HT-MoO3/C electrode shows a second cycle capacitance of 347.6 F g-1. The higher electrochemical performance of the HT-MoO3/C electrode can be attributed to the presence of carbon in its structure, which can facilitate electron transport. Our study provides a new route for further development of metal oxides for energy storage applications.

19.
Sci Rep ; 12(1): 8420, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589777

RESUMO

In this study, we demonstrate three-dimensional (3D) hollow nanosphere electrocatalysts for CO2 conversion into formate with excellent H-Cell performance and industrially-relevant current density in a 25 cm2 membrane electrode assembly electrolyzer device. Varying calcination temperature maximized formate production via optimizing the crystallinity and particle size of the constituent SnO2 nanoparticles. The best performing SnO2 nanosphere catalysts contained ~ 7.5 nm nanocrystals and produced 71-81% formate Faradaic efficiency (FE) between -0.9 V and -1.3 V vs. the reversible hydrogen electrode (RHE) at a maximum formate partial current density of 73 ± 2 mA cmgeo-2 at -1.3 V vs. RHE. The higher performance of nanosphere catalysts over SnO2 nanoparticles and commercially-available catalyst could be ascribed to their initial structure providing higher electrochemical surface area and preventing extensive nanocrystal growth during CO2 reduction. Our results are among the highest performance reported for SnO2 electrocatalysts in aqueous H-cells. We observed an average 68 ± 8% FE over 35 h of operation with multiple on/off cycles. In situ Raman and time-dependent X-ray diffraction measurements identified metallic Sn as electrocatalytic active sites during long-term operation. Further evaluation in a 25 cm2 electrolyzer cell demonstrated impressive performance with a sustained current density of 500 mA cmgeo-2 and an average 75 ± 6% formate FE over 24 h of operation. Our results provide additional design concepts for boosting the performance of formate-producing catalysts.

20.
Environ Sci Technol ; 56(2): 1341-1351, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34964609

RESUMO

We introduce a new graphene oxide (GO)-based membrane architecture that hosts cobalt catalysts within its nanoscale pore walls. Such an architecture would not be possible with catalysts in nanoscale, the current benchmark, since they would block the pores or alter the pore structure. Therefore, we developed a new synthesis procedure to load cobalt in an atomically dispersed fashion, the theoretical limit in material downsizing. The use of vitamin C as a mild reducing agent was critical to load Co as dispersed atoms (Co1), preserving the well-stacked 2D structure of GO layers. With the addition of peroxymonosulfate (PMS), the Co1-GO membrane efficiently degraded 1,4-dioxane, a small, neutral pollutant that passes through nanopores in single-pass treatment. The observed 1,4-dioxane degradation kinetics were much faster (>640 times) than the kinetics in suspension and the highest among reported persulfate-based 1,4-dioxane destruction. The capability of the membrane to reject large organic molecules alleviated their effects on radical scavenging. Furthermore, the advanced oxidation also mitigated membrane fouling. The findings of this study present a critical advance toward developing catalytic membranes with which two distinctive and complementary processes, membrane filtration and advanced oxidation, can be combined into a single-step treatment.


Assuntos
Poluentes Ambientais , Grafite , Catálise , Cobalto/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...