Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; 71(2): e13018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38197812

RESUMO

Twenty species/isolates of cyanobacteria and green algae were isolated from cyanobacterial bloom samples in lakes associated with the upper Qu'Appelle River drainage system in southern Saskatchewan, Canada. Three amoebae species (Cochliopodium sp., Vannella sp. and Vermamoeba vermiformis) were also isolated from one of these samples, and were subjected to grazing assays to determine which species of cyanobacteria or algae could potentially serve as a food source. Amoeba grazing rates were quantified based on the diameter of the plaque after 12 days on agar plate assays, and by estimation of the amoeba population growth rate from the rate of increase of plaque area. The common cyanobacterial bloom-formers Dolichospermum sp. and Aphanizomenon flos-aquae supported high growth rates for all three amoebae, while green algae, with the exception of one green alga/amoeba combination, did not support growth of the tested amoebae. Many of the cyanobacterial and algal isolates that did not support amoebae growth were ingested, suggesting that ingestion did not determine grazing success. Overall, while the cyanobacteria Dolichospermum sp. and Aphanizomenon flos-aquae were suitable food sources for the amoebae, the other cyanobacteria were grazed in an unpredictable manner, with some species/strains grazed by some amoebae and some species not grazed at all.


Assuntos
Amoeba , Aphanizomenon , Clorófitas , Cianobactérias
2.
J Microbiol Methods ; 213: 106822, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37708943

RESUMO

Bacterial natural products remain a major untapped source for novel antimicrobial scaffolds. Many of these products are encoded by biosynthetic gene clusters (BGCs), which can be identified using functional genomics. We developed a replica-plating approach to quickly screen for antibiotic production mutants from transposon mutant libraries and identify candidate antibiotic BGCs. In this technique, filter paper is used to transfer up to 200 mutants simultaneously onto a soft agar overlay or spread plate containing a target microbe to identify antibiotic-production mutants. These mutants can then be analyzed to identify disrupted genes and antibiotic BGCs. We first tested and optimized this technique by screening for previously characterized BGCs in Pantoea. We then applied the technique to uncover the gene cluster responsible for the production of an unknown broad-spectrum antibiotic from P. agglomerans 20KB447973, which we call Pantoea Natural Product 5 (PNP-5). Analysis of the predicted gene cluster for PNP-5 showed similarity to previously identified gene clusters for the broad-spectrum dithiolopyrrolone antibiotic, holomycin. Analysis of the spectrum of activity of PNP-5 showed activity against members of the Enterobacteriaceae, Erwiniaceae, and Streptococcaceae, including clinically relevant pathogens such as Klebsiella sp. and Escherichia coli. We also identified the production of a second antibiotic, pantocin A. Our findings demonstrate the utility of our replica-plating mutant transfer method in exploring unknown antibiotic BGCs. Adoption of this technique may accelerate the identification of potentially novel antimicrobial BGCs within strain collections, advancing the search for novel antimicrobials that can be used to treat multi-drug resistant infections.


Assuntos
Produtos Biológicos , Pantoea , Antibacterianos/farmacologia , Pantoea/genética , Ensaios de Triagem em Larga Escala , Família Multigênica
4.
Mol Genet Genomics ; 297(1): 213-225, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34988605

RESUMO

To better understand the taxonomy of Erwinia in the context of the Erwiniaceae family, we carried out a taxogenomic analysis of the Erwiniaceae, a family that was created following the taxonomic revision of the family, Enterobacteriaceae. There has been no systematic analysis of this family, including the agriculturally relevant genus, Erwinia. Our analyses focused on 80 strains of Erwinia along with 37 strains representing 7 other genera in the family. We identified 308 common proteins, generated a genome-level phylogeny and carried out Average Nucleotide Identity, Average Amino Acid Identity and Percentage of Conserved Protein analyses. We show that multiple strains of Erwinia cannot be assigned to established species groups and that both Erwinia gerundensis and "Erwinia mediterraneensis" are not members of Erwinia. We propose the creation of the genus Duffyella gen. nov. and the reclassification of Erwinia gerundensis to this genus as the type species, Duffyella gerundensis comb. nov. Furthermore, divergence between other species within Erwinia as measured by Average Amino Acid Identity is greater than the divergence between Erwinia and other genera, supporting the possible subdivision of the genus Erwinia into at least two genera. Our analyses also suggest that there is no basis for the establishment of the genus Kalamiella within the Erwiniaceae or the taxonomic revision of the Pantoea septica lineage. Therefore, we propose reclassifying Kalamiella piersonii as Pantoea piersonii comb. nov. Our study provides new insight into the diversity of the Erwiniaceae and provides a solid foundation for advancing taxonomic revision of this broadly relevant family.


Assuntos
Erwinia/classificação , Pantoea/classificação , DNA Bacteriano/análise , DNA Bacteriano/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Erwinia/genética , Tipagem de Sequências Multilocus , Pantoea/genética , Filogenia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Res Microbiol ; 173(1-2): 103899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34774705

RESUMO

Pantoea Natural Product 3 (PNP-3) is an antibiotic produced by Pantoea agglomerans that is effective against a broad range of multi-drug resistant bacteria. PNP-3 is encoded by a unique, eight-gene biosynthetic gene cluster composed of predicted enzymes (pnp3b, pnp3e-h), a regulator (pnp3d), and two Major Facilitator Superfamily transporters (pnp3a and pnp3c). To better characterize the role of the transporters, we generated pnp3a and pnp3c mutants and evaluated PNP-3 production. Disruption of pnp3a in Pantoea results in impaired growth and loss of antibiosis, suggesting a role in PNP-3 export and resistance. In contrast, pnp3c mutants display only reduced antibiotic production/export, suggesting a minor role for Pnp3c. Expression of pnp3a in susceptible Erwinia amylovora led to increased PNP-3 tolerance, while co-expression of pnp3a and pnp3e-h resulted in the production and export of PNP-3. Comparative genomic analyses identified pnp3a in 12 other Pantoea strains, eight of which carry a complete or nearly complete PNP-3 biosynthetic cluster. The four other Pantoea strains that carry pnp3a lack most of the PNP-3 cluster; however, they are PNP-3 tolerant. These results suggest Pnp3a plays an essential role in PNP-3 export and resistance in Pantoea.


Assuntos
Produtos Biológicos , Erwinia amylovora , Pantoea , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibiose , Produtos Biológicos/metabolismo , Erwinia amylovora/genética , Pantoea/genética , Pantoea/metabolismo
6.
Front Genet ; 11: 600116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343637

RESUMO

Antimicrobial resistance is a worldwide health crisis for which new antibiotics are needed. One strategy for antibiotic discovery is identifying unique antibiotic biosynthetic gene clusters that may produce novel compounds. The aim of this study was to demonstrate how an integrated approach that combines genome mining, comparative genomics, and functional genetics can be used to successfully identify novel biosynthetic gene clusters that produce antimicrobial natural products. Secondary metabolite clusters of an antibiotic producer are first predicted using genome mining tools, generating a list of candidates. Comparative genomic approaches are then used to identify gene suites present in the antibiotic producer that are absent in closely related non-producers. Gene sets that are common to the two lists represent leading candidates, which can then be confirmed using functional genetics approaches. To validate this strategy, we identified the genes responsible for antibiotic production in Pantoea agglomerans B025670, a strain identified in a large-scale bioactivity survey. The genome of B025670 was first mined with antiSMASH, which identified 24 candidate regions. We then used the comparative genomics platform, EDGAR, to identify genes unique to B025670 that were not present in closely related strains with contrasting antibiotic production profiles. The candidate lists generated by antiSMASH and EDGAR were compared with standalone BLAST. Among the common regions was a 14 kb cluster consisting of 14 genes with predicted enzymatic, transport, and unknown functions. Site-directed mutagenesis of the gene cluster resulted in a reduction in antimicrobial activity, suggesting involvement in antibiotic production. An integrated approach that combines genome mining, comparative genomics, and functional genetics yields a powerful, yet simple strategy for identifying potentially novel antibiotics.

7.
Int J Syst Evol Microbiol ; 70(12): 6524-6530, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33125313

RESUMO

The diverse members of the Enterobacterales are agriculturally and medically relevant species that have continued to undergo taxonomic revision. To assess the current taxonomy of 64 genera of the Enterobacterales, we carried out a phylogenetic analysis using 32 single-copy core proteins. The resulting phylogeny was robust, and shows that eight genera - Biostraticola, Enterobacillus, Gibbsiella, Limnobaculum, Izhakiella, 'Nissabacter', Rosenbergiella and Samsonia - are currently assigned to incorrect families. Taxonomic reassignment of these genera was also supported by average amino acid identity comparisons. We propose taxonomic revision of these genera to reflect their phylogenetic position within the Enterobacterales.


Assuntos
Enterobacteriaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA
9.
Microbiol Res ; 237: 126479, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32416447

RESUMO

The prevalence of antibiotic-resistant Gram-positive and Gram-negative pathogens has prompted considerable efforts to identify new antibacterials. Here we show that Pantoea agglomerans Tx10-an isolate from the sputum sample of a cystic fibrosis patient-is a strong competitor that inhibits the growth of a wide range of Gram-positive and Gram-negative bacteria through the production of a secreted compound. A genetic screen to identify the genes involved in the production of this compound resulted in the delineation of a 6-gene biosynthetic cluster. We called this compound Pantoea Natural Product 2 (PNP-2). Assays with mutants deficient in PNP-2 production revealed they were still able to inhibit Erwinia amylovora, suggesting the production of a second antibiotic, which we identified as Pantocin A. We generated Pantocin A knockouts, and a PNP-2/Pantocin A double knockout and used these to evaluate the spectrum of activity of both natural products. We show that strains of Enterobacter, E. coli, Klebsiella, Kosakonia, Pseudocitrobacter, Salmonella, Staphylococcus, and Streptococcus as well as the majority of Pantoea strains assayed are susceptible to PNP-2, indicating a broad spectrum of activity, and potential for therapeutic development.


Assuntos
Antibacterianos , Bactérias/efeitos dos fármacos , Glicopeptídeos , Pantoea/metabolismo , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Fibrose Cística/microbiologia , Genes Bacterianos , Glicopeptídeos/biossíntese , Glicopeptídeos/farmacologia , Família Multigênica , Pantoea/genética , Pantoea/isolamento & purificação
10.
Microbiol Res ; 234: 126412, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062363

RESUMO

Multi-drug resistant Acinetobacter baumannii and Pseudomonas aeruginosa continue to pose a serious health threat worldwide. Two Pantoea agglomerans strains, 3581 and SN01080, produce an antibiotic effective against these pathogens. To identify the antibiotic biosynthetic gene clusters, independent genetic screens were conducted for each strain using a mini-Tn5 transposon, which resulted in the identification of the same conserved eight-gene cluster. We have named this antibiotic Pantoea Natural Product 3 (PNP-3). The PNP-3 biosynthetic cluster is composed of genes encoding two Major Facilitator Superfamily (MFS) transporters, an ArsR family regulator, and five predicted enzymes. The biosynthetic gene cluster is found in only a few Pantoea strains and is not present within the antiSMASH and BAGEL4 databases, suggesting it may be novel. In strain 3581, PNP-3 production is linked to pantocin A production, where loss of pantocin A production results in a larger PNP-3 zone of inhibition. To evaluate the spectrum of activity, PNP-3 producers, including several PNP-3 mutants and pantocin A site-directed mutants, were tested against a collection of clinical, drug-resistant strains of A. baumannii and P. aeruginosa, as well as, Klebsiella, Escherichia coli, Enterobacter, Staphylococcus aureus, and Streptococcus mutans. PNP-3 was found to be effective against all strains except vancomycin-resistant Enterococcus under the tested conditions. Heterologous expression of the four predicted biosynthetic genes in Erwinia amylovora resulted in antibiotic production, providing a means for future overexpression and purification. PNP-3 is a natural product that is effective against drug-resistant A. baumannii, P. aeruginosa, and enteric species for which there are currently few treatment options.

11.
Phage (New Rochelle) ; 1(1): 45-56, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36147614

RESUMO

Background: Pantoea is a genus within the Enterobacterales whose members encompass free-living and host-associated lifestyles. Despite our growing understanding of the role of mobile genetic elements in the biology, ecology, and evolution of this bacterial group, few Pantoea bacteriophages have been identified and characterized. Materials and Methods: A bacteriophage that could infect Pantoea agglomerans was isolated from barnyard soil. We used electron microscopy and complete genome sequencing to identify the viral family, and evaluated its host range across 10 different Pantoea species groups using both bacterial lawn and phage lawn assays. The latter assays were carried out using a scalable microplate assay to increase throughput and enable spectrophotometric quantitation. We also performed a phylogenetic analysis to determine the closest relatives of our phage. Results: Phage vB_PagP-SK1 belongs to the genus Teseptimavirus of the Podoviridae family in the order Caudovirales. The 39,938 bp genome has a modular structure with early, middle, and late genes, along with the characteristic direct terminal repeats of 172 bp. Genome composition and synteny were similar to that of the Erwinia amylovora phage, vB_EamP-L1, with the exception of a few loci that are most similar to genes of phage infecting other members of the Enterobacteriaceae. A total of 94 Pantoea strains were surveyed and vB_PagP-SK1 was found to infect 15 Pantoea strains across three species, predominantly P. agglomerans, along with one Erwinia billingiae strain. Conclusions: vB_PagP-SK1 belongs to the Teseptimavirus genus and has a host range that spans multiple species groups, and is most closely related to the E. amylovora phage, vB_EamP-L1. The presence of xenologous genes in its genome indicates that the genome is a mosaic of multiple Teseptimavirus phages that infect members of the Enterobacteriaceae.

12.
PLoS One ; 14(11): e0224731, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31682625

RESUMO

The Enterobacterial genus Pantoea contains both free-living and host-associating species, with considerable debate as to whether documented reports of human infections by members of this species group are accurate. MALDI-TOF-based identification methods are commonly used in clinical laboratories as a rapid means of identification, but its reliability for identification of Pantoea species is unclear. In this study, we carried out cpn60-based molecular typing of 54 clinical isolates that had been identified as Pantoea using MALDI-TOF and other clinical typing methods. We found that 24% had been misidentified, and were actually strains of Citrobacter, Enterobacter, Kosakonia, Klebsiella, Pseudocitrobacter, members of the newly described Erwinia gerundensis, and even several unclassified members of the Enterobacteriaceae. The 40 clinical strains that were confirmed to be Pantoea were identified as Pantoea agglomerans, Pantoea allii, Pantoea dispersa, Pantoea eucalypti, and Pantoea septica as well as the proposed species group, Pantoea latae. Some species groups considered largely environmental or plant-associated, such as P. allii and P. eucalypti were also among clinical specimens. Our results indicate that MALDI-TOF-based identification methods may misidentify strains of the Enterobacteriaceae as Pantoea.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Infecções por Enterobacteriaceae/microbiologia , Pantoea/classificação , Erros de Diagnóstico , Infecções por Enterobacteriaceae/diagnóstico , Humanos , Pantoea/genética , Pantoea/isolamento & purificação , Filogenia , Plantas/microbiologia , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
J Bacteriol ; 201(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30745372

RESUMO

Erwinia amylovora is the causal agent of fire blight of apple and pear trees. Several bacteria have been shown to produce antibiotics that antagonize E. amylovora, including pantocins, herbicolins, dapdiamides, and the vinylglycines, 4-formylaminooxyvinylglycine (FVG) and 4-aminoethoxyvinylglycine (AVG). Pantoea ananatis BRT175 was previously shown to exhibit antibiotic activity against E. amylovora via the production of Pantoea natural product 1 (PNP-1), later shown to be FVG; however, exposure of E. amylovora to FVG results in spontaneously resistant mutants. To identify the mechanism of resistance, we used genome variant analysis on spontaneous FVG-resistant mutants of E. amylovora and identified null mutations in the l-asparagine permease gene ansP Heterologous expression of ansP in normally resistant Escherichia coli was sufficient to impart FVG susceptibility, suggesting that FVG is imported through this permease. Because FVG and AVG are structurally similar, we hypothesized that resistance to AVG would also be conferred through inactivation of ansP; however, ansP mutants were not resistant to AVG. We found that spontaneously resistant Ea321 mutants also arise in the presence of AVG, with whole-genome variant analysis revealing that resistance was due to inactivation of the arginine ABC transporter permease subunit gene artQ Heterologous expression of the predicted lysE-like transporter encoded within the Pantoea ananatis BRT175 FVG biosynthetic cluster, which is likely responsible for antibiotic export, was sufficient to confer resistance to both FVG and AVG. This work highlights the important roles of amino acid transporters in antibiotic import into bacteria and the potential utility of antimicrobial amino acid analogs as antibiotics.IMPORTANCE The related antibiotics formylaminooxyvinylglycine (FVG) and aminoethoxyvinylglycine (AVG) have been shown to have activity against the fire blight pathogen Erwinia amylovora; however, E. amylovora can develop spontaneous resistance to these antibiotics. By comparing the genomes of mutants to those of the wild type, we found that inactivation of the l-asparagine transporter conferred resistance to FVG, while inactivation of the l-arginine transporter conferred resistance to AVG. We also show that the transporter encoded by the FVG biosynthetic cluster can confer resistance to both FVG and AVG. Our work indicates the important role that amino acid transporters play in the import of antibiotics and highlights the possible utility in designer antibiotics that enter the bacterial cell through amino acid transporters.


Assuntos
Sistemas de Transporte de Aminoácidos/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Erwinia amylovora/efeitos dos fármacos , Erwinia amylovora/enzimologia , Glicina/análogos & derivados , Análise Mutacional de DNA , Farmacorresistência Bacteriana , Glicina/farmacologia , Mutação
14.
Mol Genet Genomics ; 293(6): 1453-1467, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30027301

RESUMO

For many pathogenic members of the Enterobacterales, siderophores play an important role in virulence, yet the siderophores of the host-associating members of the genus Pantoea remain unexplored. We conducted a genome-wide survey of environmental and host-associating strains of Pantoea to identify known and candidate siderophore biosynthetic clusters. Our analysis identified three clusters homologous to those of enterobactin, desferrioxamine, and aerobactin that were prevalent among Pantoea species. Using both phylogenetic and comparative genomic approaches, we demonstrate that the enterobactin-like cluster was present in the common ancestor of all Pantoea, with evidence for three independent losses of the cluster in P. eucalypti, P. eucrina, and the P. ananatis-P. stewartii lineage. The desferrioxamine biosynthetic cluster, previously described and characterized in Pantoea, was horizontally acquired from its close relative Erwinia, with phylogenetic evidence that these transfer events were ancient and occurred between ancestral lineages. The aerobactin cluster was identified in three host-associating species groups, P. septica, P. ananatis, and P. stewartii, with strong evidence for horizontal acquisition from human-pathogenic members of the Enterobacterales. Our work identifies and describes the key siderophore clusters in Pantoea, shows three distinct evolutionary processes driving their diversification, and provides a foundation for exploring the roles that these siderophores may play in human opportunistic infections.


Assuntos
Infecções por Enterobacteriaceae/genética , Interação Gene-Ambiente , Interações Hospedeiro-Patógeno/genética , Pantoea/genética , Sideróforos/biossíntese , Sideróforos/genética , Animais , Vias Biossintéticas/genética , Desferroxamina/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Evolução Molecular , Transferência Genética Horizontal , Especificidade de Hospedeiro/genética , Humanos , Família Multigênica , Filogenia , Virulência
15.
Environ Microbiol ; 19(10): 3879-3895, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28401683

RESUMO

The type III secretion system (T3SS) is an important genetic determinant that mediates interactions between Gram-negative bacteria and their eukaryotic hosts. Our understanding of the T3SS continues to expand, yet the availability of new bacterial genomes prompts questions about its diversity, distribution and evolution. Through a comprehensive survey of ∼20 000 bacterial genomes, we identified 174 non-redundant T3SSs from 109 genera and 5 phyla. Many of the bacteria are environmental strains that have not been reported to interact with eukaryotic hosts, while several species groups carry multiple T3SSs. Four ultra-conserved Microsynteny Blocks (MSBs) were defined within the T3SSs, facilitating comprehensive clustering of the T3SSs into 13 major categories, and establishing the largest diversity of T3SSs to date. We subsequently extended our search to identify type III effectors, resulting in 8740 candidate effectors. Lastly, an analysis of the key transcriptional regulators and circuits for the T3SS families revealed that low-level T3SS regulators were more conserved than higher-level regulators. This comprehensive analysis of the T3SSs and their protein effectors provides new insight into the diversity of systems used to facilitate host-bacterial interactions.


Assuntos
Bactérias Gram-Negativas/metabolismo , Proteobactérias/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano/genética , Bactérias Gram-Negativas/genética , Interações Hospedeiro-Patógeno/fisiologia , Proteobactérias/genética , Sistemas de Secreção Tipo III/genética
16.
Can J Microbiol ; 63(6): 546-558, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28264165

RESUMO

Rural communities rely on surface water reservoirs for potable water. Effective removal of chemical contaminants and bacterial pathogens from these reservoirs requires an understanding of the bacterial community diversity that is present. In this study, we carried out a 16S rRNA-based profiling approach to describe the bacterial consortia in the raw surface water entering the water treatment plants of 2 rural communities. Our results show that source water is dominated by the Proteobacteria, Bacteroidetes, and Cyanobacteria, with some evidence of seasonal effects altering the predominant groups at each location. A subsequent community analysis of transects of a biological carbon filter in the water treatment plant revealed a significant increase in the proportion of Proteobacteria, Acidobacteria, Planctomycetes, and Nitrospirae relative to raw water. Also, very few enteric coliforms were identified in either the source water or within the filter, although Mycobacterium was of high abundance and was found throughout the filter along with Aeromonas, Legionella, and Pseudomonas. This study provides valuable insight into bacterial community composition within drinking water treatment facilities, and the importance of implementing appropriate disinfection practices to ensure safe potable water for rural communities.


Assuntos
Bactérias/crescimento & desenvolvimento , Água Potável/microbiologia , Purificação da Água , Bacteroidetes , Cianobactérias , Desinfecção , Legionella , Proteobactérias/classificação , RNA Ribossômico 16S , Purificação da Água/métodos
17.
Sci Rep ; 7: 41999, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165020

RESUMO

The acronymously named "ESKAPE" pathogens represent a group of bacteria that continue to pose a serious threat to human health, not only due to their propensity for repeated emergence, but also due to their ability to "eskape" antibiotic treatment. The evolution of multi-drug resistance in these pathogens alone has greatly outpaced the development of new therapeutics, necessitating an alternative strategy for antibiotic development that considers the evolutionary mechanisms driving antibiotic resistance. In this study, we synthesize a novel inorganic antibiotic, phosphopyricin, which has antibiotic activity against the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). We show that this potent antibiotic is bactericidal, and exhibits low toxicity in an acute dose assay in mice. As a synthetic compound that does not occur naturally, phosphopyricin would be evolutionarily foreign to microbes, thereby slowing the evolution of resistance. In addition, it loses antibiotic activity upon exposure to light, meaning that the active antibiotic will not accumulate in the general environment where strong selective pressures imposed by antibiotic residuals are known to accelerate resistance. Phosphopyricin represents an innovation in antimicrobials, having a synthetic core, and a photosensitive chemical architecture that would reduce accumulation in the environment.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Compostos Inorgânicos/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Animais , Bactérias/isolamento & purificação , Infecções Bacterianas/microbiologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana
18.
Water Res ; 104: 397-407, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27576158

RESUMO

Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production.


Assuntos
Ozônio , Purificação da Água , Água Potável , Filtração , Poluentes Químicos da Água , Qualidade da Água
19.
mSphere ; 1(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303689

RESUMO

Pantoea is a versatile genus of bacteria with both plant- and animal-pathogenic strains, some of which have been suggested to cause human infections. There is, however, limited knowledge on the potential determinants used for host association and pathogenesis in animal systems. In this study, we used the model host Dictyostelium discoideum to show that isolates of Pantoea ananatis exhibit differential grazing susceptibility, with some being resistant to grazing by the amoebae. We carried out a high-throughput genetic screen of one grazing-resistant isolate, P. ananatis BRT175, using the D. discoideum pathosystem to identify genes responsible for the resistance phenotype. Among the 26 candidate genes involved in grazing resistance, we identified rhlA and rhlB, which we show are involved in the biosynthesis of a biosurfactant that enables swarming motility in P. ananatis BRT175. Using liquid chromatography-mass spectrometry (LC-MS), the biosurfactant was shown to be a glycolipid with monohexose-C10-C10 as the primary congener. We show that this novel glycolipid biosurfactant is cytotoxic to the amoebae and is capable of compromising cellular integrity, leading to cell lysis. The production of this biosurfactant may be important for bacterial survival in the environment and could contribute to the establishment of opportunistic infections. IMPORTANCE The genetic factors used for host interaction by the opportunistic human pathogen Pantoea ananatis are largely unknown. We identified two genes that are important for the production of a biosurfactant that confers grazing resistance against the social amoeba Dictyostelium discoideum. We show that the biosurfactant, which exhibits cytotoxicity toward the amoebae, is a glycolipid that incorporates a hexose rather than rhamnose. The production of this biosurfactant may confer a competitive advantage in the environment and could potentially contribute to the establishment of opportunistic infections.

20.
FEMS Microbiol Lett ; 362(21)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26420853

RESUMO

Many selectable phenotypes in microbial systems, including antibiotic resistance, can be conferred by single point mutations. This is frequently exploited in research, where the selection and use of microbial mutants that are spontaneously resistant to antibiotics like rifampicin and streptomycin facilitate the recovery and/or quantification of a target microbe. Such mutations are commonly employed as genetic markers for in vitro and in vivo experiments, often with little consideration as to the ultimate system-level impact of these single nucleotide mutations on the physiology of the microbe. There is substantial literature on the pleiotropic effects of point mutations conferring antibiotic resistance; yet, it is unclear whether this work is considered by the research communities outside of the discipline. This review examines some of the known pleiotropic effects of point mutations that provide selectable resistance markers, and how these mutations may impact general physiology and growth in host and non-host environments.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana/genética , Mutação Puntual , Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Bactérias/patogenicidade , Evolução Molecular , Aptidão Genética , Testes de Sensibilidade Microbiana , Fenótipo , Rifampina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...