Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Imaging (Bellingham) ; 11(1): 013502, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223318

RESUMO

Purpose: Active matrix flat panel imagers (AMFPIs) with thin-film transistor arrays experience image quality degradation by electronic noise in low-dose radiography and fluoroscopy. One potential solution is to overcome electronic noise using avalanche gain in an amorphous selenium (a-Se) (HARP) photoconductor in indirect AMFPI. In this work, we aim to improve temporal performance of HARP using a novel composite hole blocking layer (HBL) structure and increase optical quantum efficiency (OQE) to CsI:Tl scintillators by tellurium (Te) doping. Approach: Two different HARP structures were fabricated: Composite HBL samples and Te-doped samples. Dark current and optical sensitivity measurements were performed on the composite HBL samples to evaluate avalanche gain and temporal performance. The OQE and temporal performance of the Te-doped samples were characterized by optical sensitivity measurements. A charge transport model was used to investigate the hole mobility and lifetime of the Te-doped samples in combination with time-of-flight measurements. Results: The composite HBL has excellent temporal performance, with ghosting below 3% at 10 mR equivalent exposure. Furthermore, the composite HBL samples have dark current <10-10 A/cm2 and achieved an avalanche gain of 16. Te-doped samples increased OQE from 0.018 to 0.43 for 532 nm light. The addition of Te resulted in 2.1% first-frame lag, attributed to hole trapping within the layer. Conclusions: The composite HBL and Te-doping can be utilized to improve upon the limitations of previously developed indirect HARP imagers, showing excellent temporal performance and increased OQE, respectively.

2.
ACS Appl Electron Mater ; 3(8): 3538-3546, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35600494

RESUMO

Amorphous selenium (a-Se) with its single-carrier and non-Markovian, hole impact ionization process can revolutionize low-light detection and emerge to be a solid-state replacement to the vacuum photomultiplier tube (PMT). Although a-Se-based solid-state avalanche detectors can ideally provide gains comparable to PMTs, their development has been severely limited by the irreversible breakdown of inefficient hole blocking layers (HBLs). Thus, understanding of the transport characteristics and ways to control electrical hot spots and, thereby, the breakdown voltage is key to improving the performance of avalanche a-Se devices. Simulations using Atlas, SILVACO, were employed to identify relevant conduction mechanisms in a-Se-based detectors: space-charge-limited current, bulk thermal generation, Schottky emission, Poole-Frenkel activated mobility, and hopping conduction. Simulation parameters were obtained from experimental data and first-principle calculations. The theoretical models were validated by comparing them with experimental steady-state dark current densities in avalanche and nonavalanche a-Se detectors. To maintain bulk thermal generation-limited dark current levels in a-Se detectors, a high-permittivity noninsulating material is required to substantially decrease the electric field at the electrode/hole blocking layer interface, thus preventing injection from the high-voltage electrode. This, in turn, prevents Joule heating from crystallizing the a-Se layer, consequently avoiding early dielectric breakdown of the device.

3.
ACS Photonics ; 6(6): 1338-1344, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38665849

RESUMO

Ultrafast photodetection has traditionally been performed with crystalline photodetectors, which tend to suffer from low production yield, suboptimal detection efficiency, and operational limitations that restrict their potential applications. Amorphous selenium is a unique, disordered photosensing material in which carrier transport can be shifted entirely from localized to extended states where holes get hot, resulting in deterministic, non-Markovian impact ionization avalanche, causing selenium to exhibit characteristics similar to crystalline photoconductors. For the first time, we have fabricated a multiwell selenium detector using nanopillars that achieves both avalanche gain and unipolar time-differential charge sensing. We experimentally show how these features together improve selenium's temporal performance by nearly 4 orders of magnitude, allowing us to achieve picosecond timing jitter suitable for a variety of ultrafast applications. Such a detector would be a viable low-cost, high production yield alternative for picosecond photodetection and imaging.

4.
J Med Imaging (Bellingham) ; 5(4): 043502, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30840737

RESUMO

Photon counting detectors (PCD) have the potential to improve x-ray imaging; however, they are still hindered by high costs and performance limitations. By using amorphous selenium (a-Se), the cost of PCDs can be significantly reduced compared with modern crystalline semiconductors, and enable large-area deposition. We are developing a direct conversion field-shaping multiwell avalanche detector (SWAD) to overcome the limitation of low carrier mobility and low charge conversion gain in a-Se. SWAD's dual-grid design creates separate nonavalanche interaction (bulk) and avalanche sensing (well) regions, achieving depth-independent avalanche gain. Unipolar time differential (UTD) charge sensing, combined with tunable avalanche gain in the well region allows for fast response and high charge gain. We developed a probability-based numerical simulation to investigate the impact of UTD charge sensing and avalanche gain on the photon counting performance of different a-Se detector configurations. Pulse height spectra (PHS) for 59.5 and 30 keV photons were simulated. We observed excellent agreement between our model and previously published PHS measurements for a planar detector. The energy resolution significantly improved from 33 keV for the planar detector to ∼ 7 keV for SWAD. SWAD was found to have a linear response approaching 200 kcps / pixel .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...