Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(8)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012865

RESUMO

(1) Background: Species of the anamorphic genus Cladobotryum, are known for their fungicolous lifestyle, making them important mycopathogens in fungiculture. Many morphological, ecological, and molecular phylogenetic studies of the genus have been done to date, but taxonomic uncertainties and challenges still remain. Fungal secondary metabolites, being vastly diverse, are utilised as an extra tool in fungal systematics. Despite being studied for their potentially bioactive compounds, Cladobotryum species are insufficiently investigated regarding metabolomics. (2) Methods: The aim of this study is the identification of Greek strains of Cladobotryum by integrating morphological data, ITS-based phylogeny, and 1H NMR-based metabolomics into a polyphasic approach. (3) Results: Twenty-three strains, isolated from sporophores of macromycetes inhabiting diverse Greek ecosystems, were morphologically identified as Cladobotryum apiculatum, C. fungicola, C. mycophilum, C. varium, C. verticillatum, and Hypomyces rosellus (anamorph C. dendroides), whereas seven strains, which produced red-pigmented metabolites, presented an ambiguous taxonomic position at the species level. Molecular phylogenetics and metabolomics corroborated the morphological findings. (4) Conclusions: Thorough morphological study, ITS region-based phylogeny, and NMR-based metabolomics contribute complementarily to resolving the genus Cladobotryum systematics.

2.
Sci Rep ; 12(1): 5391, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354908

RESUMO

Irritable bowel syndrome (IBS) is a common disorder characterized by chronic abdominal pain and changes in bowel movements. Visceral hypersensitivity is thought to be responsible for pain complaints in a subset of patients. In an IBS-like animal model, visceral hypersensitivity was triggered by intestinal fungi, and lower mycobiota α-diversity in IBS patients was accompanied by a shift toward increased presence of Candida albicans and Saccharomyces cerevisiae. Yet, this shift was observed in hypersensitive as well as normosensitive patients and diversity did not differ between IBS subgroups. The latter suggests that, when a patient changes from hyper- to normosensitivity, the relevance of intestinal fungi is not necessarily reflected in compositional mycobiota changes. We now confirmed this notion by performing ITS1 sequencing on an existing longitudinal set of fecal samples. Since ITS1 methodology does not recognize variations within species, we next focused on heterogeneity within cultured healthy volunteer and IBS-derived C. albicans strains. We observed inter- and intra-individual genomic variation and partial clustering of strains from hypersensitive patients. Phenotyping showed differences related to growth, yeast-to-hyphae morphogenesis and gene expression, specifically of the gene encoding fungal toxin candidalysin. Our investigations emphasize the need for strain-specific cause-and-effect studies within the realm of IBS research.


Assuntos
Candida albicans , Síndrome do Intestino Irritável , Dor Abdominal/complicações , Animais , Candida albicans/genética , Fezes/microbiologia , Humanos , Intestinos , Síndrome do Intestino Irritável/microbiologia
3.
Med Mycol ; 58(7): 987-995, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32043147

RESUMO

Antifungal susceptibility profiles of rare Saccharomycotina yeasts remain missing, even though an increase in prevalence of such rare Candida species was reported in candidemia. Majority of these rare yeast species carry intrinsic resistances against at least one antifungal compound. Some species are known to be cross-resistant (against multiple drugs of the same drug class) or even multi-drug resistant (against multiple drugs of different drug classes). We performed antifungal susceptibility testing (AFST) according to EUCAST broth microdilution for 14 rare species (Clavispora lusitaniae, Candida intermedia, Candida auris, Diutina rugosa, Wickerhamiella pararugosa, Yarrowia lipolytica, Pichia norvegensis, Candida nivariensis, Kluyveromyces marxianus, Wickerhamomyces anomalus, Candida palmioleophila, Meyerozyma guilliermondii, Meyerozyma caribbica, and Debaryomyces hansenii) known to cause candidemia. In total, 234 isolates were tested for amphotericin B, fluconazole, itraconazole, voriconazole, posaconazole, anidulafungin, micafungin, and caspofungin. Amphothericin B had the broadest efficiency against the 14 tested rare yeast species, while high minimum inhibitory concentrations (MICs) against azole drugs and echinocandins were common. Voriconazole was the most efficient azole drug. Multidrug resistance was observed for the species C. auris and K. marxianus. Multidrug resistant individual isolates were found for Y. lipolytica and M. caribbica. In conclusion, the observed high MIC values of the rare Saccharomycotina species tested limit antifungal treatment options, complicating the management of such infections.


Assuntos
Antifúngicos/uso terapêutico , Candidemia/tratamento farmacológico , Farmacorresistência Fúngica , Fluconazol/uso terapêutico , Testes de Sensibilidade Microbiana , Saccharomyces/efeitos dos fármacos , Saccharomyces/isolamento & purificação , Voriconazol/uso terapêutico , Humanos
4.
FEMS Yeast Res ; 19(4)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158288

RESUMO

Ascomycetous yeast species belonging to the subphylum Saccharomycotina (Ascomycota, Fungi) may cause a variety of pathologies in humans. Candida albicans accounts for almost half of candidemia cases but the emergence of uncommon yeasts in the clinical setting is increasing. Here, we highlight the epidemiology of Saccharomycotina budding yeasts causing bloodstream infections, address antifungal susceptibility patterns and unravel how the latter corresponds to their phylogenetic relationship. Only studies applying Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and/or sequence-based identification methods were considered. A ribosomal DNA-based phylogeny was used to present phylogenetic relationships of yeasts pathogens and their close relatives and to show how the antifungal susceptibility patterns for amphotericin B and azole drugs correlate with the clades found. Candida albicans was still the leading cause of yeast-related sepsis, but 22 other Saccharomycotina yeast species were also identified as a common cause of sepsis based on the literature. Similar minimum inhibitory concentration (MIC) values are found between phylogenetically closely related species and appear to be clade-specific to a large extent. This demonstrates that phylogeny may serve as a first guidance for treatment of emerging yeasts with uncommon susceptibility patterns due to intrinsic resistance.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Azóis/farmacologia , Candidemia/microbiologia , Filogenia , Ascomicetos/patogenicidade , Candida/efeitos dos fármacos , Candida/patogenicidade , DNA Ribossômico/genética , Humanos , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Yeast ; 35(6): 425-429, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29320804

RESUMO

Online sequence databases such as NCBI GenBank serve as a tremendously useful platform for researchers to share and reuse published data. However, submission systems lack control for errors such as organism misidentification, which once entered in the database can be propagated and mislead downstream analyses. Here we present an illustrating case of misidentification of Candida albicans from a clinical sample as Naumovozyma dairenensis based on whole-genome shotgun data. Analyses of phylogenetic markers, read mapping and single nucleotide polymorphisms served to correct the identification. We propose that the routine use of such analyses could help to detect misidentifications arising from unsupervised analyses and correct them before they enter the databases. Finally, we discuss broader implications of such misidentifications and the difficulty of correcting them once they are in the records.


Assuntos
Candida albicans/genética , Bases de Dados de Ácidos Nucleicos , Genoma Fúngico , Controle de Qualidade , Saccharomycetales/genética , Filogenia , Erro Científico Experimental , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...