Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 721, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862613

RESUMO

The genome folds into complex configurations and structures thought to profoundly impact its function. The intricacies of this dynamic structure-function relationship are not well understood particularly in the context of viral infection. To unravel this interplay, here we provide a comprehensive investigation of simultaneous host chromatin structural (via Hi-C and ATAC-seq) and functional changes (via RNA-seq) in response to vaccinia virus infection. Over time, infection significantly impacts global and local chromatin structure by increasing long-range intra-chromosomal interactions and B compartmentalization and by decreasing chromatin accessibility and inter-chromosomal interactions. Local accessibility changes are independent of broad-scale chromatin compartment exchange (~12% of the genome), underscoring potential independent mechanisms for global and local chromatin reorganization. While infection structurally condenses the host genome, there is nearly equal bidirectional differential gene expression. Despite global weakening of intra-TAD interactions, functional changes including downregulated immunity genes are associated with alterations in local accessibility and loop domain restructuring. Therefore, chromatin accessibility and local structure profiling provide impactful predictions for host responses and may improve development of efficacious anti-viral counter measures including the optimization of vaccine design.


Assuntos
Cromatina , Vaccinia virus , Cromatina/metabolismo , Cromatina/genética , Animais , Vaccinia virus/genética , Vaccinia virus/fisiologia , Chlorocebus aethiops , Células Vero , Vacínia/virologia , Vacínia/imunologia , Interações Hospedeiro-Patógeno/genética , Multiômica
2.
Res Sq ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559036

RESUMO

Chromatin conformation capture followed by next-generation sequencing in combination with large-scale polymer simulations (4DHiC) produces detailed information on genomic loci interactions, allowing for the interrogation of 3D spatial genomic structures. Here, Hi-C data was acquired from the infection of fetal lung fibroblast (MRC5) cells with α-coronavirus 229E (CoV229E). Experimental Hi-C contact maps were used to determine viral-induced changes in genomic architecture over a 48-hour time period following viral infection, revealing substantial alterations in contacts within chromosomes and in contacts between different chromosomes. To gain further structural insight and quantify the underlying changes, we applied the 4DHiC polymer simulation method to reconstruct the 3D genomic structures and dynamics corresponding to the Hi-C maps. The models successfully reproduced experimental Hi-C data, including the changes in contacts induced by viral infection. Our 3D spatial simulations uncovered widespread chromatin restructuring, including increased chromosome compactness and A-B compartment mixing arising from infection. Our model also suggests increased spatial accessibility to regions containing interferon-stimulated genes upon infection with CoV229E, followed by chromatin restructuring at later time points, potentially inducing the migration of chromatin into more compact regions. This is consistent with previously observed suppression of gene expression. Our spatial genomics study provides a mechanistic structural basis for changes in chromosome architecture induced by coronavirus infection in lung cells.

3.
BMC Bioinformatics ; 24(1): 441, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37990143

RESUMO

BACKGROUND: Correlation metrics are widely utilized in genomics analysis and often implemented with little regard to assumptions of normality, homoscedasticity, and independence of values. This is especially true when comparing values between replicated sequencing experiments that probe chromatin accessibility, such as assays for transposase-accessible chromatin via sequencing (ATAC-seq). Such data can possess several regions across the human genome with little to no sequencing depth and are thus non-normal with a large portion of zero values. Despite distributed use in the epigenomics field, few studies have evaluated and benchmarked how correlation and association statistics behave across ATAC-seq experiments with known differences or the effects of removing specific outliers from the data. Here, we developed a computational simulation of ATAC-seq data to elucidate the behavior of correlation statistics and to compare their accuracy under set conditions of reproducibility. RESULTS: Using these simulations, we monitored the behavior of several correlation statistics, including the Pearson's R and Spearman's [Formula: see text] coefficients as well as Kendall's [Formula: see text] and Top-Down correlation. We also test the behavior of association measures, including the coefficient of determination R[Formula: see text], Kendall's W, and normalized mutual information. Our experiments reveal an insensitivity of most statistics, including Spearman's [Formula: see text], Kendall's [Formula: see text], and Kendall's W, to increasing differences between simulated ATAC-seq replicates. The removal of co-zeros (regions lacking mapped sequenced reads) between simulated experiments greatly improves the estimates of correlation and association. After removing co-zeros, the R[Formula: see text] coefficient and normalized mutual information display the best performance, having a closer one-to-one relationship with the known portion of shared, enhanced loci between simulated replicates. When comparing values between experimental ATAC-seq data using a random forest model, mutual information best predicts ATAC-seq replicate relationships. CONCLUSIONS: Collectively, this study demonstrates how measures of correlation and association can behave in epigenomics experiments. We provide improved strategies for quantifying relationships in these increasingly prevalent and important chromatin accessibility assays.


Assuntos
Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cromatina/genética , Reprodutibilidade dos Testes , Sequenciamento de Cromatina por Imunoprecipitação , Transposases/genética , Análise de Sequência de DNA
4.
Microbiol Spectr ; : e0147622, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943043

RESUMO

The increasing occurrence of drought is a global challenge that threatens food security through direct impacts to both plants and their interacting soil microorganisms. Plant growth promoting microbes are increasingly being harnessed to improve plant performance under stress. However, the magnitude of microbiome impacts on both structural and physiological plant traits under water limited and water replete conditions are not well-characterized. Using two microbiomes sourced from a ponderosa pine forest and an agricultural field, we performed a greenhouse experiment that used a crossed design to test the individual and combined effects of the water availability and the soil microbiome composition on plant performance. Specifically, we studied the structural and leaf functional traits of maize that are relevant to drought tolerance. We further examined how microbial relationships with plant phenotypes varied under different combinations of microbial composition and water availability. We found that water availability and microbial composition affected plant structural traits. Surprisingly, they did not alter leaf function. Maize grown in the forest-soil microbiome produced larger plants under well-watered and water-limited conditions, compared to an agricultural soil community. Although leaf functional traits were not significantly different between the watering and microbiome treatments, the bacterial composition and abundance explained significant variability in both plant structure and leaf function within individual treatments, especially water-limited plants. Our results suggest that bacteria-plant interactions that promote plant performance under stress depend upon the greater community composition and the abiotic environment. IMPORTANCE Globally, drought is an increasingly common and severe stress that causes significant damage to agricultural and wild plants, thereby threatening food security. Despite growing evidence of the potential benefits of soil microorganisms on plant performance under stress, decoupling the effects of the microbiome composition versus the water availability on plant growth and performance remains a challenge. We used a highly controlled and replicated greenhouse experiment to understand the impacts of microbial community composition and water limitation on corn growth and drought-relevant functions. We found that both factors affected corn growth, and, interestingly, that individual microbial relationships with corn growth and leaf function were unique to specific watering/microbiome treatment combinations. This finding may help explain the inconsistent success of previously identified microbial inocula in improving plant performance in the face of drought, outside controlled environments.

5.
Front Genet ; 11: 560444, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193644

RESUMO

Eukaryotic organisms regulate the organization, structure, and accessibility of their genomes through chromatin remodeling that can be inherited as epigenetic modifications. These DNA and histone protein modifications are ultimately responsible for an organism's molecular adaptation to the environment, resulting in distinctive phenotypes. Epigenetic manipulation of algae holds yet untapped potential for the optimization of biofuel production and bioproduct formation; however, epigenetic machinery and modes-of-action have not been well characterized in algae. We sought to determine the extent to which the biofuel platform species Picochlorum soloecismus utilizes DNA methylation to regulate its genome. We found candidate genes with domains for DNA methylation in the P. soloecismus genome. Whole-genome bisulfite sequencing revealed DNA methylation in all three cytosine contexts (CpG, CHH, and CHG). While global DNA methylation is low overall (∼1.15%), it occurs in appreciable quantities (12.1%) in CpG dinucleotides in a bimodal distribution in all genomic contexts, though terminators contain the greatest number of CpG sites per kilobase. The P. soloecismus genome becomes hypomethylated during the growth cycle in response to nitrogen starvation. Algae cultures were treated daily across the growth cycle with 20 µM 5-aza-2'-deoxycytidine (5AZA) to inhibit propagation of DNA methylation in daughter cells. 5AZA treatment significantly increased optical density and forward and side scatter of cells across the growth cycle (16 days). This increase in cell size and complexity correlated with a significant increase (∼66%) in lipid accumulation. Site specific CpG DNA methylation was significantly altered with 5AZA treatment over the time course, though nitrogen starvation itself induced significant hypomethylation in CpG contexts. Genes involved in several biological processes, including fatty acid synthesis, had altered methylation ratios in response to 5AZA; we hypothesize that these changes are potentially responsible for the phenotype of early induction of carbon storage as lipids. This is the first report to utilize epigenetic manipulation strategies to alter algal physiology and phenotype. Collectively, these data suggest these strategies can be utilized to fine-tune metabolic responses, alter growth, and enhance environmental adaption of microalgae for desired outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...