Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 107(2): 303-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21123185

RESUMO

BACKGROUND AND AIMS: Serotiny is common in the genus Banksia, so any seed collection is likely to be comprised of seeds that were produced in many different years. This study aimed to determine the impact of cone age and degree of serotiny on longevity in ex situ storage. METHODS: Cones of identifiable age classes were collected from three species of Banksia. Seeds were extracted from cones and the degree of serotiny calculated. An estimate of initial viability (K(i)), the time for viability to fall by one probit (σ) and the relative longevity of seeds (p(50)) for each species and cone age class was determined using a comparative longevity test (50 °C, 63 % relative humidity). KEY RESULTS: The degree of serotiny ranged from moderate (7·9) for Banksia attenuata to strong (40·4) for B. hookeriana. Survival curves for all seed age classes within each species could be described by regressions with a common slope (1/σ), but with different values for K(i). The time taken for viability to fall by one probit (σ) could be described by a common value (29·1 d) for all three species. CONCLUSIONS: Differences in seed longevity between cone age classes and species was related to variation in initial viability (K(i)) rather than to differences in σ. While targeting the youngest mature seed cohort on a plant will maximize the viability of seeds collected, a wide range of age classes should be collected (but stored as separate cohorts if possible) for quality conservation/restoration seed collections where genetic diversity is important.


Assuntos
Proteaceae/fisiologia , Sementes/fisiologia , Conservação dos Recursos Naturais , Germinação , Longevidade , Austrália Ocidental
2.
Ann Bot ; 104(5): 833-44, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19620135

RESUMO

BACKGROUND AND AIMS: The Sapindaceae is one of 17 plant families in which seed dormancy is caused by a water-impermeable seed or fruit coat (physical dormancy, PY). However, until now the water gap in Sapindaceae had not been identified. The primary aim of this study was to identify the water gap in Dodonaea petiolaris (Sapindaceae) seeds and to describe its basic morphology and anatomy. METHODS: Seed fill, viability, water-uptake (imbibition) and other characteristics were assessed for D. petiolaris seeds. The location and structure of the water gap were investigated using a blocking experiment, time series photography, scanning electron microscopy and light microscopy. Dodonaea petiolaris seeds with PY also were assessed for loss of PY at four ecologically significant temperatures under moist and dry conditions. Seeds of three other species of Sapindaceae were examined for presence of a water gap. KEY RESULTS: The water gap in D. petiolaris seeds was identified as a small plug in the seed coat adjacent to the hilum and opposite the area where the radicle emerges. The plug was dislodged (i.e. water gap opened = dormancy break) by dipping seeds in boiling water for 2.5 min or by incubating seeds on a moist substrate at 20/35 degrees C for 24 weeks. Layers of cells in the plug, including palisade and subpalisade, are similar to those in the rest of the seed coat. The same kind of water gap was found in three other species of Sapindaceae, Diplopeltis huegelii, Distichostemon hispidulus and Dodonaea aptera. CONCLUSIONS: Following dormancy break (opening of water gap), initial uptake of water by the seed occurs only through the water gap. Thus, the plug must be dislodged before the otherwise intact seed can germinate. The anatomy of the plug is similar to water gaps in some of the other plant families with PY.


Assuntos
Sapindaceae/fisiologia , Sementes/fisiologia , Germinação/fisiologia , Microscopia Eletrônica de Varredura , Sementes/ultraestrutura , Água/fisiologia
3.
Ann Bot ; 101(9): 1349-62, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18369237

RESUMO

BACKGROUND AND AIMS: Sapindaceae is one of 16 angiosperm families whose seeds have physical dormancy (PY). However, the extent and nature of PY within this family is poorly known. The primary aims of this study were: (1) to evaluate seed characteristics and determine presence (or not) of PY within nine genera of Australian Sapindaceae; and (2) to compare the frequency of PY across the phylogenetic tree within Australian Sapindaceae. METHODS: Viability, imbibition and seed characteristics were assessed for 14 taxa from nine genera of Sapindaceae. For five species of Dodonaea, optimal conditions for germination and dormancy break were evaluated. An in situ burial experiment was performed on D. hackettiana seeds to identify the factor(s) responsible for overcoming PY. Classes of dormancy and of non-dormancy for 26 genera of Sapindaceae were mapped onto a phylogenetic tree for the family. KEY RESULTS: Mean seed viability across all taxa was 69.7 %. Embryos were fully developed and folded (seven genera) or bent (two genera); no endosperm was present. Seeds of all five Dodonaea spp. and of Distichostemon hispidulus had PY. Hot-water treatment released PY in these six species. Optimal germination temperature for seeds of the four Dodonaea spp. that germinated was 15-20 degrees C. Following 5 months burial in soil, 36.4 % of D. hackettiana seeds had lost PY and germinated by the beginning of the winter wet season (May). Laboratory and field data indicate that dormancy was broken by warm, moist temperatures (> or =50 degrees C) during summer. CONCLUSIONS: PY occurs infrequently in genera of Sapindaceae native to Australia. Seeds of Dodonaea and Distichostemon had PY, whereas those of the other seven genera did not. Seeds of these two genera and of Diplopeltis (a previous study) are the only three of the 20 native Australian genera of Sapindaceae for which germination has been studied that have PY; all three belong to subfamily Dodonaeoideae.


Assuntos
Germinação/fisiologia , Sapindaceae/fisiologia , Sementes/fisiologia , Germinação/efeitos dos fármacos , Sapindaceae/classificação , Sementes/efeitos dos fármacos , Solo/análise , Especificidade da Espécie , Temperatura , Água/metabolismo , Água/farmacologia
4.
Ann Bot ; 101(5): 701-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18245107

RESUMO

BACKGROUND AND AIMS: Seed physiological dormancy (PD) limits the use and conservation of some of Queensland's (Qld) native forb species. It was hypothesised that optimum dormancy-alleviating treatments would reflect environmental conditions that seeds experience in situ, and this premise was tested for PD seeds of four species native to south-west Qld. METHODS: High temperatures and increased rainfall during summer are characteristic of this semi-arid tropical environment. Ex situ treatments were designed to mimic conditions that seeds dispersed in spring experience during the summer months before germinating in cooler autumn temperatures. Seeds received between 4 and 20 weeks of a dry after-ripening (DAR), warm stratification or dry/wet cycling treatment (DAR interspersed with short periods of warm stratification), in darkness, before being transferred to germination test conditions. In addition, natural dormancy alleviation of one of the Goodeniaceae species was investigated in situ. KEY RESULTS: Dry/wet cycling resulted in higher levels of germination of Actinobole uliginosum (Asteraceae), Goodenia cycloptera and Velleia glabrata (Goodeniaceae) when compared with constant DAR or stratification, while Goodenia fascicularis (Goodeniaceae) responded better to short durations of warm stratification. Long durations of DAR partially alleviated PD of A. uliginosum; however, stratification induced and maintained dormancy of this species. Modifications to the dry/wet cycling treatment and germination test conditions based on data collected in situ enabled germination of G. cycloptera and V. glabrata to be further improved. CONCLUSIONS: Treatments designed using temperature, relative humidity and rainfall data for the period between natural seed dispersal and germination can successfully alleviate PD. Differences between the four species in conditions that resulted in maximum germination indicate that, in addition to responding to broad-scale climate patterns, species may be adapted to particular microsites and/or seasonal conditions.


Assuntos
Asteraceae/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Ecossistema , Germinação , Periodicidade , Fatores de Tempo , Clima Tropical , Água/metabolismo
5.
Ann Bot ; 96(7): 1225-36, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16199485

RESUMO

BACKGROUND AND AIMS: Following a period of burial, more Actinotus leucocephalus (Apiaceae) and Tersonia cyathiflora (Gyrostemonaceae) seeds germinate in smoke water. The main aim of this study was to determine whether these fire-ephemeral seeds exhibit annual dormancy cycling during burial. This study also aimed to determine the effect of dormancy alleviation on the range of light and temperature conditions at which seeds germinate, and the possible factors driving changes in seed dormancy during burial. METHODS: Seeds were collected in summer, buried in soil in mesh bags in autumn and exhumed every 6 months for 24 months. Germination of exhumed and laboratory-stored (15 degrees C) seeds was assessed at 20 degrees C in water or smoke water. Germination response to light or dark conditions, incubation temperature (10, 15, 20, 25 and 30 degrees C), nitrate and gibberellic acid were also examined following burial or laboratory storage for 24 months. In the laboratory seeds were also stored at various temperatures (5, 15, 37 and 20/50 degrees C) for 1, 2 and 3 months followed by germination testing in water or smoke water. KEY RESULTS: The two species exhibited dormancy cycling during soil burial, producing low levels of germination in response to smoke water when exhumed in spring and high levels of germination in autumn. In autumn, seeds germinated in both light and dark and at a broader range of temperatures than did laboratory-stored seeds, and some Actinotus leucocephalus seeds also germinated in water alone. Dormancy release of Actinotus leucocephalus was slow during dry storage at 15 degrees C and more rapid at higher temperatures (37 and 20/50 degrees C); weekly wet/dry cycles further accelerated the rate of dormancy release. Cold stratification (5 degrees C) induced secondary dormancy. By contrast, no Tersonia cyathiflora seeds germinated following any of the laboratory storage treatments. CONCLUSIONS: Temperature and moisture influence dormancy cycling in Actinotus leucocephalus seeds. These factors alone did not simulate dormancy cycling of Tersonia cyathiflora seeds under the conditions tested.


Assuntos
Apiaceae/fisiologia , Germinação/fisiologia , Magnoliopsida/fisiologia , Análise de Variância , Ecologia , Incêndios , Estações do Ano , Sementes/ultraestrutura , Solo , Temperatura , Fatores de Tempo , Água
6.
Carbohydr Res ; 331(1): 19-25, 2001 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-11284502

RESUMO

Two digalactosyl D-chiro-inositols and two trigalactosyl D-chiro-inositols, members of the fagopyritol A series and fagopyritol B series, were isolated from buckwheat (Fagopyrum esculentum Moench) seeds. Structures of the first three were determined by 1H and 13C NMR. Fagopyritol B2 is alpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1-->2) -1D-chiro-inositol, and fagopyritol A2 is alpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1-->3)- 1D-chiro-inositol. Fagopyritol A3, a trigalactosyl D-chiro-inositol, is alpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1 -->6) -alpha-D-galactopyranosyl-(1-->3)- 1 D-chiro-inositol. From analysis of hydrolysis products, the second trigalactosyl D-chiro-inositol, fagopyritol B3, isalpha-D-galactopyranosyl-(1-->6)-alpha-D-galactopyranosyl-(1-->6) -alpha-D-galactopyranosyl-(1-->2)-1D-chiro-inositol.


Assuntos
Dissacarídeos/química , Fagopyrum/química , Inositol/análogos & derivados , Inositol/química , Oligossacarídeos/química , Sementes/química , Configuração de Carboidratos , Sequência de Carboidratos , Dissacarídeos/isolamento & purificação , Indicadores e Reagentes , Inositol/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular
7.
Carbohydr Res ; 328(4): 623-7, 2000 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-11093720

RESUMO

The molecular structure of fagopyritol A1, a novel galactopyranosyl cyclitol from buckwheat seeds, was determined to be O-alpha-D-galactopyranosyl-(1 --> 3)-D-chiro-inositol by 1H and 13C NMR. Fagopyritol A1 is a positional isomer of fagopyritol B1 (O-alpha-D-galactopyranosyl-(1 --> 2)-D-chiro-inositol), representing a different series of fagopyritol oligomers. Trimethylsilyl derivatives of both compounds have similar mass spectra, but each may be identified by different abundance ratios of fragments with m/z 305/318 and 318/319.


Assuntos
Dissacarídeos/química , Ressonância Magnética Nuclear Biomolecular , Sequência de Carboidratos , Fagopyrum/química , Espectrometria de Massas , Sementes/química , Análise de Sequência
8.
J Agric Food Chem ; 48(7): 2843-7, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10898633

RESUMO

Fagopyritols are mono-, di-, and trigalactosyl derivatives of D-chiro-inositol that accumulate in seeds of common buckwheat (Fagopyrum esculentum Moench) and may be important for seed maturation and as a dietary supplement. Fagopyritols and other soluble carbohydrates were assayed in mature groats and 11 milling fractions of common buckwheat seed. Because fagopyritols are in embryo and aleurone tissues, differences in fagopyritol concentrations reflect varying proportions of these tissues in each milling fraction. Bran milling fractions contained 6.4 g of total soluble carbohydrates per 100 g of dry weight, 55% of which was sucrose and 40% fagopyritols. Flour milling fractions had reduced fagopyritol concentration [0.7 g/100 g of dry weight total fagopyritols in the dark (Supreme) flour and 0.3 g/100 g in the light (Fancy) flours]. Fagopyritol B1 was 70% of total fagopyritols in all milling fractions. Fagopyritols were 40% of total soluble carbohydrates in groats of two cultivars of common buckwheat but 21% in groats of tartary buckwheat [Fagopyrum tataricum (L.) Gaertn.], probably a reflection of environment and genetics. A rhamnoglucoside present in tartary buckwheat was not detected in common buckwheat.


Assuntos
Carboidratos/análise , Dissacarídeos/análise , Fagopyrum/química , Inositol/análise , Manipulação de Alimentos , Sementes/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...