Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Exp Hematol ; 130: 104131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000729

RESUMO

Age-associated clonal hematopoiesis (CH) occurs due to somatic mutations accrued in hematopoietic stem cells (HSCs) that confer a selective growth advantage in the context of aging. The mechanisms by which CH-mutant HSCs gain this advantage with aging are not comprehensively understood. Using unbiased transcriptomic approaches, we identified Oncostatin M (OSM) signaling as a candidate contributor to age-related Dnmt3a-mutant CH. We found that Dnmt3a-mutant HSCs from young adult mice (3-6 months old) subjected to acute OSM stimulation do not demonstrate altered proliferation, apoptosis, hematopoietic engraftment, or myeloid differentiation. Dnmt3a-mutant HSCs from young mice do transcriptionally upregulate an inflammatory cytokine network in response to acute in vitro OSM stimulation as evidenced by significant upregulation of the genes encoding IL-6, IL-1ß, and TNFα. OSM-stimulated Dnmt3a-mutant HSCs also demonstrate upregulation of the anti-inflammatory genes Socs3, Atf3, and Nr4a1. In the context of an aged bone marrow (BM) microenvironment, Dnmt3a-mutant HSCs upregulate proinflammatory genes but not the anti-inflammatory genes Socs3, Atf3, and Nr4a1. The results from our studies suggest that aging may exhaust the regulatory mechanisms that HSCs employ to resolve inflammatory states in response to factors such as OSM.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Camundongos , Anti-Inflamatórios , Hematopoese/genética , Oncostatina M/genética
2.
Mamm Genome ; 34(4): 509-519, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37581698

RESUMO

The Mouse Phenome Database continues to serve as a curated repository and analysis suite for measured attributes of members of diverse mouse populations. The repository includes annotation to community standard ontologies and guidelines, a database of allelic states for 657 mouse strains, a collection of protocols, and analysis tools for flexible, interactive, user directed analyses that increasingly integrates data across traits and populations. The database has grown from its initial focus on a standard set of inbred strains to include heterogeneous mouse populations such as the Diversity Outbred and mapping crosses and well as Collaborative Cross, Hybrid Mouse Diversity Panel, and recombinant inbred strains. Most recently the system has expanded to include data from the International Mouse Phenotyping Consortium. Collectively these data are accessible by API and provided with an interactive tool suite that enables users' persistent selection, storage, and operation on collections of measures. The tool suite allows basic analyses, advanced functions with dynamic visualization including multi-population meta-analysis, multivariate outlier detection, trait pattern matching, correlation analyses and other functions. The data resources and analysis suite provide users a flexible environment in which to explore the basis of phenotypic variation in health and disease across the lifespan.


Assuntos
Fenômica , Camundongos , Animais , Camundongos Endogâmicos , Fenótipo
3.
bioRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502912

RESUMO

Age-associated clonal hematopoiesis (CH) occurs due to somatic mutations accrued in hematopoietic stem cells (HSCs) that confer a selective advantage in the context of aging. The mechanisms by which CH-mutant HSCs gain this advantage with aging are not comprehensively understood. Using unbiased transcriptomic approaches, we identify Oncostatin M (OSM) signaling as a candidate contributor to aging-driven Dnmt3a -mutant CH. We find that Dnmt3a -mutant HSCs from young mice do not functionally respond to acute OSM stimulation with respect to proliferation, apoptosis, hematopoietic engraftment, or myeloid differentiation. However, young Dnmt3a -mutant HSCs transcriptionally upregulate an inflammatory cytokine network in response to acute OSM stimulation including genes encoding IL-6, IL-1ß and TNFα. In addition, OSM-stimulated Dnmt3a -mutant HSCs upregulate the anti-inflammatory genes Socs3, Atf3 and Nr4a1 , creating a negative feedback loop limiting sustained activation of the inflammatory network. In the context of an aged bone marrow (BM) microenvironment with chronically elevated levels of OSM, Dnmt3a -mutant HSCs upregulate pro-inflammatory genes but do not upregulate Socs3, Atf3 and Nr4a1 . Together, our work suggests that chronic inflammation with aging exhausts the regulatory mechanisms in young CH-mutant HSCs that resolve inflammatory states, and that OSM is a master regulator of an inflammatory network that contributes to age-associated CH.

4.
Front Pharmacol ; 13: 980723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263130

RESUMO

Background: Critically ill patients on supplemental oxygen therapy eventually develop acute lung injury (ALI). Reactive oxygen species (ROS) produced during ALI perturbs the mitochondrial dynamics resulting in cellular damage. Genetic deletion of the mitochondrial A-kinase anchoring protein 1 (Akap1) in mice resulted in mitochondrial damage, Endoplasmic reticulum (ER) stress, increased expression of mitophagy proteins and pro-inflammatory cytokines, exacerbating hyperoxia-induced Acute Lung Injury (HALI). Objective: Despite a strong causal link between mitochondrial dysfunction and HALI, the mechanisms governing the disease progression at the transcriptome level is unknown. Methods: In this study, RNA sequencing (RNA-seq) analysis was carried out using the lungs of Akap1 knockout (Akap1 -/-) mice exposed to normoxia or 48 h of hyperoxia followed by quantitative real time PCR and Ingenuity pathway analysis (IPA). Western blot analysis assessed mitochondrial dysfunction, OXPHOS complex (I-V), apoptosis and antioxidant proteins. Mitochondrial enzymatic assays was used to measure the aconitase, fumarase, citrate synthase activities in isolated mitochondria from Akap1 -/- vs. Wt mice exposed to hyperoxia. Results: Transcriptome analysis of Akap1 -/- exposed to hyperoxia reveals increases in transcripts encoding electron transport chain (ETC) and tricarboxylic acid cycle (TCA) proteins. Ingenuity pathway analysis (IPA) shows enrichment of mitochondrial dysfunction and oxidative phosphorylation in Akap1 -/- mice. Loss of AKAP1, coupled with oxidant injury, significantly decreases the activities of TCA enzymes. Mechanistically, a significant loss of dynamin-related protein 1 (Drp1) phosphorylation at the protein kinase A (PKA) site Serine 637 (Ser637), decreases in Akt phosphorylation at Serine 437 (Ser47) and increase in the expression of pro-apoptotic protein Bax indicate mitochondrial dysfunction. Heme oxygenase-1 (HO-1) levels significantly increased in CD68 positive alveolar macrophages in Akap1 -/- lungs, suggesting a strong antioxidant response to hyperoxia. Conclusion: Overall these results suggest that AKAP1 overexpression and modulation of Drp1 phosphorylation at Ser637 is an important therapeutic strategy for acute lung injury.

5.
Cancer Discov ; 12(12): 2763-2773, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36169447

RESUMO

Clonal hematopoiesis resulting from the enhanced fitness of mutant hematopoietic stem cells (HSC) associates with both favorable and unfavorable health outcomes related to the types of mature mutant blood cells produced, but how this lineage output is regulated is unclear. Using a mouse model of a clonal hematopoiesis-associated mutation, DNMT3AR882/+ (Dnmt3aR878H/+), we found that aging-induced TNFα signaling promoted the selective advantage of mutant HSCs and stimulated the production of mutant B lymphoid cells. The genetic loss of the TNFα receptor TNFR1 ablated the selective advantage of mutant HSCs without altering their lineage output, whereas the loss of TNFR2 resulted in the overproduction of mutant myeloid cells without altering HSC fitness. These results nominate TNFR1 as a target to reduce clonal hematopoiesis and the risk of associated diseases and support a model in which clone size and mature blood lineage production can be independently controlled to modulate favorable and unfavorable clonal hematopoiesis outcomes. SIGNIFICANCE: Through the identification and dissection of TNFα signaling as a key driver of murine Dnmt3a-mutant hematopoiesis, we report the discovery that clone size and production of specific mature blood cell types can be independently regulated. See related commentary by Niño and Pietras, p. 2724. This article is highlighted in the In This Issue feature, p. 2711.


Assuntos
Hematopoiese Clonal , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Camundongos , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Linhagem da Célula/genética
6.
Biomolecules ; 12(2)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35204783

RESUMO

Abnormalities in airway epithelia and lung parenchyma are found in Atp8b1 mutant mice, which develop pulmonary fibrosis after hyperoxic insult. Microarray and ingenuity pathway analysis (IPA) show numerous transcripts involved in ciliogenesis are downregulated in 14-month (14 M) -old Atp8b1 mouse lung compared with wild-type C57BL/6. Lung epithelium of Atp8b1 mice demonstrate apical abnormalities of ciliated and club cells in the bronchial epithelium on transmission electron microscopy (TEM). Matrix metalloproteinase 7 (MMP7) regulates of ciliogenesis and is a biomarker for idiopathic pulmonary fibrosis (IPF) in humans. Mmp7 transcript and protein expression are significantly upregulated in 14 M Atp8b1 mutant mouse lung. MMP7 expression is also increased in bronchoalveolar lavage fluid (BAL). Immunohistochemistry is localized MMP7 to bronchial epithelial cells in the Atp8b1 mutant. In conclusion, MMP7 is upregulated in the aged Atp8b1 mouse model, which displays abnormal ciliated cell and club cell morphology. This mouse model can facilitate the exploration of the role of MMP7 in epithelial integrity and ciliogenesis in IPF. The Atp8b1 mutant mouse is proposed as a model for IPF.


Assuntos
Adenosina Trifosfatases , Fibrose Pulmonar Idiopática , Metaloproteinase 7 da Matriz , Proteínas de Transferência de Fosfolipídeos , Adenosina Trifosfatases/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Fibrose Pulmonar Idiopática/enzimologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transferência de Fosfolipídeos/metabolismo
7.
J Cell Biol ; 220(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515734

RESUMO

Micronuclei, whole or fragmented chromosomes spatially separated from the main nucleus, are associated with genomic instability and have been identified as drivers of tumorigenesis. Paradoxically, Kif18a mutant mice produce micronuclei due to asynchronous segregation of unaligned chromosomes in vivo but do not develop spontaneous tumors. We report here that micronuclei in Kif18a mutant mice form stable nuclear envelopes. Challenging Kif18a mutant mice via deletion of the Trp53 gene led to formation of thymic lymphoma with elevated levels of micronuclei. However, loss of Kif18a had modest or no effect on survival of Trp53 homozygotes and heterozygotes, respectively. Micronuclei in cultured KIF18A KO cells form stable nuclear envelopes characterized by increased recruitment of nuclear envelope components and successful expansion of decondensing chromatin compared with those induced by nocodazole washout or radiation. Lagging chromosomes were also positioned closer to the main chromatin masses in KIF18A KO cells. These data suggest that not all micronuclei actively promote tumorigenesis.


Assuntos
Carcinogênese/genética , Núcleo Celular/genética , Cinesinas/genética , Membrana Nuclear/genética , Animais , Linhagem Celular , Cromatina/genética , Cromossomos/genética , Dano ao DNA/genética , Feminino , Instabilidade Genômica/genética , Humanos , Masculino , Camundongos
8.
Aging Cell ; 20(5): e13328, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788371

RESUMO

In genetically heterogeneous mice produced by the CByB6F1 x C3D2F1 cross, the "non-feminizing" estrogen, 17-α-estradiol (17aE2), extended median male lifespan by 19% (p < 0.0001, log-rank test) and 11% (p = 0.007) when fed at 14.4 ppm starting at 16 and 20 months, respectively. 90th percentile lifespans were extended 7% (p = 0.004, Wang-Allison test) and 5% (p = 0.17). Body weights were reduced about 20% after starting the 17aE2 diets. Four other interventions were tested in males and females: nicotinamide riboside, candesartan cilexetil, geranylgeranylacetone, and MIF098. Despite some data suggesting that nicotinamide riboside would be effective, neither it nor the other three increased lifespans significantly at the doses tested. The 17aE2 results confirm and extend our original reports, with very similar results when started at 16 months compared with mice started at 10 months of age in a prior study. The consistently large lifespan benefit in males, even when treatment is started late in life, may provide information on sex-specific aspects of aging.


Assuntos
Estradiol/farmacologia , Longevidade/efeitos dos fármacos , Envelhecimento , Animais , Feminino , Masculino , Camundongos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Piridínio/farmacologia , Caracteres Sexuais
9.
BMC Genet ; 21(1): 101, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907542

RESUMO

BACKGROUND: The complement cascade is increasingly implicated in development of a variety of diseases with strong immune contributions such as Alzheimer's disease and Systemic Lupus Erythematosus. Mouse models have been used to determine function of central components of the complement cascade such as C1q and C3. However, species differences in their gene structures mean that mice do not adequately replicate human complement regulators, including CR1 and CR2. Genetic variation in CR1 and CR2 have been implicated in modifying disease states but the mechanisms are not known. RESULTS: To decipher the roles of human CR1 and CR2 in health and disease, we engineered C57BL/6J (B6) mice to replace endogenous murine Cr2 with human complement receptors, CR1 and CR2 (B6.CR2CR1). CR1 has an array of allotypes in human populations and using traditional recombination methods (Flp-frt and Cre-loxP) two of the most common alleles (referred to here as CR1long and CR1short) can be replicated within this mouse model, along with a CR1 knockout allele (CR1KO). Transcriptional profiling of spleens and brains identified genes and pathways differentially expressed between mice homozygous for either CR1long, CR1short or CR1KO. Gene set enrichment analysis predicts hematopoietic cell number and cell infiltration are modulated by CR1long, but not CR1short or CR1KO. CONCLUSION: The B6.CR2CR1 mouse model provides a novel tool for determining the relationship between human-relevant CR1 alleles and disease.


Assuntos
Receptores de Complemento 3b/genética , Receptores de Complemento 3d/genética , Alelos , Animais , Modelos Animais de Doenças , Feminino , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Transcriptoma
10.
Nucleic Acids Res ; 48(D1): D716-D723, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31696236

RESUMO

The Mouse Phenome Database (MPD; https://phenome.jax.org) is a widely accessed and highly functional data repository housing primary phenotype data for the laboratory mouse accessible via APIs and providing tools to analyze and visualize those data. Data come from investigators around the world and represent a broad scope of phenotyping endpoints and disease-related traits in naïve mice and those exposed to drugs, environmental agents or other treatments. MPD houses rigorously curated per-animal data with detailed protocols. Public ontologies and controlled vocabularies are used for annotation. In addition to phenotype tools, genetic analysis tools enable users to integrate and interpret genome-phenome relations across the database. Strain types and populations include inbred, recombinant inbred, F1 hybrid, transgenic, targeted mutants, chromosome substitution, Collaborative Cross, Diversity Outbred and other mapping populations. Our new analysis tools allow users to apply selected data in an integrated fashion to address problems in trait associations, reproducibility, polygenic syndrome model selection and multi-trait modeling. As we refine these tools and approaches, we will continue to provide users a means to identify consistent, quality studies that have high translational relevance.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma , Fenômica , Fenótipo , Algoritmos , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Mutação , Linguagens de Programação , Ferramenta de Busca , Software , Especificidade da Espécie , Navegador
11.
Exp Mol Pathol ; 110: 104286, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323190

RESUMO

Psoriasis (PS) is a common inflammatory and incurable skin disease affecting 2-3% of the human population. Although genome-wide association studies implicate more than 60 loci, the full complement of genetic factors leading to disease is not known. Rare, highly penetrant, gain-of-function, dominantly acting mutations within the human caspase recruitment domain family, member 14 (CARD14) gene lead to the development of PS and psoriatic arthritis (PSA) (a familial p.G117S and de-novo p.E138A alteration). These residues are conserved in mouse and orthologous Knock-In (KI) mutations within Card14 were created. The Card14tm.1.1Sun allele (G117S) resulted in no clinically or histologically evident phenotype of the skin or joints in young adult or old mice. However, mice carrying the Card14tm2.1Sun mutant allele (E138A) were runted and developed thick, white, scaly skin soon after birth, dying within two weeks or less. The skin hyperplasia and inflammation was remarkable similarity to human PS at the clinical, histological, and transcriptomic levels. For example, the skin was markedly acanthotic and exhibited orthokeratotic hyperkeratosis with minimal inflammation and no pustules and transcripts affecting critical pathways of epidermal differentiation and components of the IL17 axis (IL23, IL17A, IL17C, TNF and IL22) were altered. Similar changes were seen in a set of orthologous microRNAs previously associated with PS suggesting conservation across species. Crossing the Card14tm2.1Sun/WT mice to C57BL/6NJ, FVB/NJ, CBA/J, C3H/HeJ, and 129S1/SvImJ generated progeny with epidermal acanthosis and marked orthokeratotic hyperkeratosis regardless of the hybrid strain. Of these hybrid lines, only the FVB;B6N(129S4) mice survived to 250 days of age or older and has led to recombinant inbred lines homozygous for Card14E138A that are fecund and have scaly skin disease. This implicates that modifiers of PS severity exist in mice, as in the familial forms of the disease in humans.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Mutação com Ganho de Função , Genes Modificadores , Guanilato Ciclase/genética , Guanilato Quinases/fisiologia , Inflamação/genética , Proteínas de Membrana/genética , Psoríase/genética , Dermatopatias/genética , Animais , Feminino , Técnicas de Introdução de Genes , Humanos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Psoríase/patologia , Índice de Gravidade de Doença , Dermatopatias/patologia , Transcriptoma
12.
G3 (Bethesda) ; 9(8): 2637-2646, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31263061

RESUMO

Anthracyclines cause progressive cardiotoxicity whose ultimate severity is individual to the patient. Genetic determinants contributing to this variation are difficult to study using current mouse models. Our objective was to determine whether a spectrum of anthracycline induced cardiac disease can be elicited across 10 Collaborative Cross mouse strains given the same dose of doxorubicin. Mice from ten distinct strains were given 5 mg/kg of doxorubicin intravenously once weekly for 5 weeks (total 25 mg/kg). Mice were killed at acute or chronic timepoints. Body weight was assessed weekly, followed by terminal complete blood count, pathology and a panel of biomarkers. Linear models were fit to assess effects of treatment, sex, and sex-by-treatment interactions for each timepoint. Impaired growth and cardiac pathology occurred across all strains. Severity of these varied by strain and sex, with greater severity in males. Cardiac troponin I and myosin light chain 3 demonstrated strain- and sex-specific elevations in the acute phase with subsequent decline despite ongoing progression of cardiac disease. Acute phase cardiac troponin I levels predicted the ultimate severity of cardiac pathology poorly, whereas myosin light chain 3 levels predicted the extent of chronic cardiac injury in males. Strain- and sex-dependent renal toxicity was evident. Regenerative anemia manifested during the acute period. We confirm that variable susceptibility to doxorubicin-induced cardiotoxicity observed in humans can be modeled in a panel of CC strains. In addition, we identified a potential predictive biomarker in males. CC strains provide reproducible models to explore mechanisms contributing to individual susceptibility in humans.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxicidade/etiologia , Doxorrubicina/efeitos adversos , Animais , Antibióticos Antineoplásicos/uso terapêutico , Biomarcadores , Biópsia , Cardiotoxicidade/mortalidade , Cruzamentos Genéticos , Modelos Animais de Doenças , Doxorrubicina/uso terapêutico , Feminino , Fibrose , Cardiopatias/diagnóstico , Cardiopatias/etiologia , Humanos , Masculino , Camundongos
13.
J Invest Dermatol ; 139(12): 2447-2457.e7, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31207231

RESUMO

Pseudoxanthoma elasticum, a prototype of heritable multisystem ectopic mineralization disorders, is caused by mutations in the ABCC6 gene encoding a putative efflux transporter, ABCC6. The phenotypic spectrum of pseudoxanthoma elasticum varies, and the correlation between genotype and phenotype has not been established. To identify genetic modifiers, we performed quantitative trait locus analysis in inbred mouse strains that carry the same hypomorphic allele in Abcc6 yet with highly variable ectopic mineralization phenotypes of pseudoxanthoma elasticum. Abcc6 was confirmed as a major determinant for ectopic mineralization in multiple tissues. Integrative analysis using functional genomics tools that included GeneWeaver, String, and Mouse Genome Informatics identified a total of nine additional candidate modifier genes that could influence the organ-specific ectopic mineralization phenotypes. Integration of the candidate genes into the existing ectopic mineralization gene network expands the current knowledge on the complexity of the network that, as a whole, governs ectopic mineralization in soft connective tissues.


Assuntos
DNA/genética , Genes Modificadores/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Animais , Modelos Animais de Doenças , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fenótipo , Pseudoxantoma Elástico/genética
14.
PeerJ ; 7: e6586, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30944774

RESUMO

In this study, we investigated the impact of initial tumor volume, rate of tumor growth, cohort size, study duration, and data analysis method on chemotherapy treatment response classifications in patient-derived xenografts (PDXs). The analyses were conducted on cisplatin treatment response data for 70 PDX models representing ten cancer types with up to 28-day study duration and cohort sizes of 3-10 tumor-bearing mice. The results demonstrated that a 21-day dosing study using a cohort size of eight was necessary to reliably detect responsive models (i.e., tumor volume ratio of treated animals to control between 0.1 and 0.42)-independent of analysis method. A cohort of three tumor-bearing animals led to a reliable classification of models that were both highly responsive and highly nonresponsive to cisplatin (i.e., tumor volume ratio of treated animals to control animals less than 0.10). In our set of PDXs, we found that tumor growth rate in the control group impacted treatment response classification more than initial tumor volume. We repeated the study design factors using docetaxel treated PDXs with consistent results. Our results highlight the importance of defining endpoints for PDX dosing studies when deciding the size of cohorts to use in dosing studies and illustrate that response classifications for a study do not differ significantly across the commonly used analysis methods that are based on tumor volume changes in treatment versus control groups.

15.
Aging Cell ; 18(3): e12953, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30916479

RESUMO

Diets low in methionine extend lifespan of rodents, though through unknown mechanisms. Glycine can mitigate methionine toxicity, and a small prior study has suggested that supplemental glycine could extend lifespan of Fischer 344 rats. We therefore evaluated the effects of an 8% glycine diet on lifespan and pathology of genetically heterogeneous mice in the context of the Interventions Testing Program. Elevated glycine led to a small (4%-6%) but statistically significant lifespan increase, as well as an increase in maximum lifespan, in both males (p = 0.002) and females (p < 0.001). Pooling across sex, glycine increased lifespan at each of the three independent sites, with significance at p = 0.01, 0.053, and 0.03, respectively. Glycine-supplemented females were lighter than controls, but there was no effect on weight in males. End-of-life necropsies suggested that glycine-treated mice were less likely than controls to die of pulmonary adenocarcinoma (p = 0.03). Of the 40 varieties of incidental pathology evaluated in these mice, none were increased to a significant degree by the glycine-supplemented diet. In parallel analyses of the same cohort, we found no benefits from TM5441 (an inhibitor of PAI-1, the primary inhibitor of tissue and urokinase plasminogen activators), inulin (a source of soluble fiber), or aspirin at either of two doses. Our glycine results strengthen the idea that modulation of dietary amino acid levels can increase healthy lifespan in mice, and provide a foundation for further investigation of dietary effects on aging and late-life diseases.


Assuntos
Envelhecimento/metabolismo , Suplementos Nutricionais , Glicina/farmacologia , Longevidade/efeitos dos fármacos , Adenomatose Pulmonar/epidemiologia , Envelhecimento/efeitos dos fármacos , Animais , Aspirina/farmacologia , Dieta , Feminino , Inulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Piperazinas/farmacologia , para-Aminobenzoatos/farmacologia
16.
J Immunol ; 201(7): 1907-1917, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30127089

RESUMO

In both NOD mice and humans, the development of type 1 diabetes (T1D) is dependent in part on autoreactive CD8+ T cells recognizing pancreatic ß cell peptides presented by often quite common MHC class I variants. Studies in NOD mice previously revealed that the common H2-Kd and/or H2-Db class I molecules expressed by this strain aberrantly lose the ability to mediate the thymic deletion of pathogenic CD8+ T cell responses through interactions with T1D susceptibility genes outside the MHC. A gene(s) mapping to proximal chromosome 7 was previously shown to be an important contributor to the failure of the common class I molecules expressed by NOD mice to mediate the normal thymic negative selection of diabetogenic CD8+ T cells. Using an inducible model of thymic negative selection and mRNA transcript analyses, we initially identified an elevated Nfkbid expression variant as a likely NOD-proximal chromosome 7 region gene contributing to impaired thymic deletion of diabetogenic CD8+ T cells. CRISPR/Cas9-mediated genetic attenuation of Nfkbid expression in NOD mice resulted in improved negative selection of autoreactive diabetogenic AI4 and NY8.3 CD8+ T cells. These results indicated that allelic variants of Nfkbid contribute to the efficiency of intrathymic deletion of diabetogenic CD8+ T cells. However, although enhancing thymic deletion of pathogenic CD8+ T cells, ablating Nfkbid expression surprisingly accelerated T1D onset that was associated with numeric decreases in both regulatory T and B lymphocytes in NOD mice.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Cromossomos Humanos Par 7/genética , Diabetes Mellitus Tipo 1/imunologia , Proteínas I-kappa B/genética , Timo/imunologia , Alelos , Animais , Autoantígenos/imunologia , Diferenciação Celular , Células Cultivadas , Deleção Clonal , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Proteínas I-kappa B/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Polimorfismo Genético
17.
Exp Mol Pathol ; 102(2): 337-346, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28268192

RESUMO

Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2cub/cub) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2cub/cub and Rhbdf2+/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds.


Assuntos
Antioxidantes , Proteínas de Transporte/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Cicatrização , Animais , Proteínas de Transporte/genética , Modelos Animais de Doenças , Orelha/lesões , Receptores ErbB/genética , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Imunoglobulina G/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Fenótipo , Fosforilação , Receptores de IgG/genética , Receptores de IgG/metabolismo , Regeneração , Transdução de Sinais
18.
Exp Dermatol ; 26(9): 820-822, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28094869

RESUMO

Mice with mutations in SHANK-associated RH domain interactor (Sharpin) develop a hypereosinophilic auto-inflammatory disease known as chronic proliferative dermatitis. Affected mice have increased apoptosis in the keratinocytes of the skin, oesophagus and forestomach driven by extrinsic TNF receptor-mediated apoptotic signalling pathways. FAS receptor signalling is an extrinsic apoptotic signalling mechanism frequently involved in inflammatory skin diseases. Compound mutations in Sharpin and Fas or Fasl were created to determine whether these death domain proteins influenced the cutaneous phenotype in Sharpin null mice. Both Sharpin/Fas and Sharpin/Fasl compound mutant mice developed an auto-inflammatory phenotype similar to that seen in Sharpin null mice, indicating that initiation of apoptosis by FAS signalling is likely not involved in the pathogenesis of this disease.


Assuntos
Proteínas de Transporte/fisiologia , Proteína Ligante Fas/metabolismo , Queratinócitos/fisiologia , Dermatopatias/etiologia , Receptor fas/metabolismo , Animais , Apoptose , Proteína Ligante Fas/genética , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Receptor fas/genética
19.
Aging (Albany NY) ; 8(9): 2232-2252, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27689529

RESUMO

OBJECTIVE: Recent studies implicate cardiolipin oxidation in several age-related diseases. Atp8b1 encoding Type 4 P-type ATPases is a cardiolipin transporter. Mutation in Atp8b1 gene or inflammation of the lungs impairs the capacity of Atp8b1 to clear cardiolipin from lung fluid. However, the link between Atp8b1 mutation and age-related gene alteration is unknown. Therefore, we investigated how Atp8b1 mutation alters age-related genes. METHODS: We performed Affymetrix gene profiling of lungs isolated from young (7-9 wks, n=6) and aged (14 months, 14 M, n=6) C57BL/6 and Atp8b1 mutant mice. In addition, Ingenuity Pathway Analysis (IPA) was performed. Differentially expressed genes were validated by quantitative real-time PCR (qRT-PCR). RESULTS: Global transcriptome analysis revealed 532 differentially expressed genes in Atp8b1 lungs, 157 differentially expressed genes in C57BL/6 lungs, and 37 overlapping genes. IPA of age-related genes in Atp8b1 lungs showed enrichment of Xenobiotic metabolism and Nrf2-mediated signaling pathways. The increase in Adamts2 and Mmp13 transcripts in aged Atp8b1 lungs was validated by qRT-PCR. Similarly, the decrease in Col1a1 and increase in Cxcr6 transcripts was confirmed in both Atp8b1 mutant and C57BL/6 lungs. CONCLUSION: Based on transcriptome profiling, our study indicates that Atp8b1 mutant mice may be susceptible to age-related lung diseases.


Assuntos
Adenosina Trifosfatases/genética , Envelhecimento/genética , Pulmão/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Adenosina Trifosfatases/metabolismo , Envelhecimento/metabolismo , Animais , Perfilação da Expressão Gênica , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Transcriptoma
20.
Exp Mol Pathol ; 101(3): 303-307, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27794420

RESUMO

Angiogenesis is a common feature of pathological processes including wound healing, tumor formation, and chronic inflammation. Chronic inflammation can also be associated with dilation or proliferation of lymph vessels. We examined blood vessels and lymphatics and the expression of pro- and anti-angiogenic genes in the skin of SHARPIN-deficient mice which spontaneously develop a chronic proliferative dermatitis (cpdm). The number of blood vessels in the dermis of cpdm mice increased with age as the inflammation progressed. Lymphatics identified by labeling for LYVE1 and podoplanin were moderately dilated, but they were not increased in number. The expression of proangiogenic Vegfa, Flt1 and anti-angiogenic Sema3a mRNA was increased. VEGFA was primarily localized in keratinocytes of cpdm skin. There was also increased expression of Ece1 and Pdpn mRNA. Podoplanin was restricted to lymphatic endothelial cells in normal skin, but fibroblasts in cpdm skin also reacted with anti-podoplanin antibodies indicating that they were activated. The expression of other angiogenic and lymphangiogenic factors was not altered or decreased. These results indicate that cpdm mice may be a useful model to study the pathogenesis of angiogenesis in chronic inflammation.


Assuntos
Proteínas de Transporte/genética , Dermatite/metabolismo , Neovascularização Patológica/metabolismo , Pele/irrigação sanguínea , Animais , Dermatite/patologia , Células Endoteliais/metabolismo , Enzimas Conversoras de Endotelina/genética , Enzimas Conversoras de Endotelina/metabolismo , Feminino , Fibroblastos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Queratinócitos/metabolismo , Vasos Linfáticos/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Semaforina-3A/genética , Semaforina-3A/metabolismo , Pele/citologia , Pele/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...