Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(49): 10659-10666, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38032847

RESUMO

The Mg-O coordination environment of silicate glasses of composition CaMgSi2O6, Na2MgSi3O8, and K2MgSi5O12 is probed using ultrahigh-field (35.2 T) 25Mg magic angle spinning nuclear magnetic resonance (MAS NMR) and triple-quantum MAS NMR spectroscopy. These spectra clearly reveal the coexistence of 4-fold- (MgIV) and 6-fold- (MgVI) coordinated Mg in all glasses. The MgIV/MgVI ratio implies an average Mg-O coordination number of ∼5 for CaMgSi2O6 glass, bringing NMR results for the first time in good agreement with those reported in previous studies based on diffraction and X-ray absorption spectroscopy, thus resolving a decade-long controversy regarding Mg coordination in alkaline-earth silicate glasses. The Mg-O coordination number decreases to ∼4.5 in the alkali-Mg silicate glasses, indicating that Mg competes effectively with the low field strength alkali cations for the nonbridging oxygen in the structure to attain tetrahedral coordination. This work illustrates the promise of ultrahigh-field NMR spectroscopy in structural studies involving nuclides with low gyromagnetic ratio.

2.
Nat Mater ; 21(11): 1290-1297, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280703

RESUMO

Stable catalysts are essential to address energy and environmental challenges, especially for applications in harsh environments (for example, high temperature, oxidizing atmosphere and steam). In such conditions, supported metal catalysts deactivate due to sintering-a process where initially small nanoparticles grow into larger ones with reduced active surface area-but strategies to stabilize them can lead to decreased performance. Here we report stable catalysts prepared through the encapsulation of platinum nanoparticles inside an alumina framework, which was formed by depositing an alumina precursor within a separately prepared porous organic framework impregnated with platinum nanoparticles. These catalysts do not sinter at 800 °C in the presence of oxygen and steam, conditions in which conventional catalysts sinter to a large extent, while showing similar reaction rates. Extending this approach to Pd-Pt bimetallic catalysts led to the small particle size being maintained at temperatures as high as 1,100 °C in air and 10% steam. This strategy can be broadly applied to other metal and metal oxides for applications where sintering is a major cause of material deactivation.


Assuntos
Nanopartículas Metálicas , Platina , Temperatura , Vapor , Óxido de Alumínio
3.
Adv Mater ; 33(44): e2104533, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34535919

RESUMO

Electronic and geometric interactions between active and support phases are critical in determining the activity of heterogeneous catalysts, but metal-support interactions are challenging to study. Here, it is demonstrated how the combination of the monolayer-controlled formation using atomic layer deposition (ALD) and colloidal nanocrystal synthesis methods leads to catalysts with sub-nanometer precision of active and support phases, thus allowing for the study of the metal-support interactions in detail. The use of this approach in developing a fundamental understanding of support effects in Pd-catalyzed methane combustion is demonstrated. Uniform Pd nanocrystals are deposited onto Al2 O3 /SiO2 spherical supports prepared with control over morphology and Al2 O3 layer thicknesses ranging from sub-monolayer to a ≈4 nm thick uniform coating. Dramatic changes in catalytic activity depending on the coverage and structure of Al2 O3 situated at the Pd/Al2 O3 interface are observed, with even a single monolayer of alumina contributing an order of magnitude increase in reaction rate. By building the Pd/Al2 O3 interface up layer-by-layer and using uniform Pd nanocrystals, this work demonstrates the importance of controlled and tunable materials in determining metal-support interactions and catalyst activity.

4.
Chem Sci ; 10(45): 10620-10628, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32110348

RESUMO

The promise of lead halide hybrid perovskites for optoelectronic applications makes finding less-toxic alternatives a priority. The double perovskite Cs2AgBiBr6 (1) represents one such alternative, offering long carrier lifetimes and greater stability under ambient conditions. However, the large and indirect 1.95 eV bandgap hinders its potential as a solar absorber. Here we report that alloying crystals of 1 with up to 1 atom% Sn results in a bandgap reduction of up to ca. 0.5 eV while maintaining low toxicity. Crystals can be alloyed with up to 1 atom% Sn and the predominant substitution pathway appears to be a ∼2 : 1 substitution of Sn2+ and Sn4+ for Ag+ and Bi3+, respectively, with Ag+ vacancies providing charge compensation. Spincoated films of 1 accommodate a higher Sn loading, up to 4 atom% Sn, where we see mostly Sn2+ substitution for both Ag+ and Bi3+. Density functional theory (DFT) calculations ascribe the bandgap redshift to the introduction of Sn impurity bands below the conduction band minimum of the host lattice. Using optical absorption spectroscopy, photothermal deflection spectroscopy, X-ray absorption spectroscopy, 119Sn NMR, redox titration, single-crystal and powder X-ray diffraction, multiple elemental analysis and imaging techniques, and DFT calculations, we provide a detailed analysis of the Sn content and oxidation state, dominant substitution sites, and charge-compensating defects in Sn-alloyed Cs2AgBiBr6 (1:Sn) crystals and films. An understanding of heterovalent alloying in halide double perovskites opens the door to a wider breadth of potential alloying agents for manipulating their band structures in a predictable manner.

5.
Acta Crystallogr C Struct Chem ; 73(Pt 3): 128-136, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28257006

RESUMO

Most applications of high-resolution NMR to questions of short-range order/disorder in inorganic materials have been made in systems where ions with unpaired electron spins are of negligible concentration, with structural information extracted primarily from chemical shifts, quadrupolar coupling parameters, and nuclear dipolar couplings. In some cases, however, the often-large additional resonance shifts caused by interactions between unpaired electron and nuclear spins can provide unique new structural information in materials with contents of paramagnetic cations ranging from hundreds of ppm to several per cent and even higher. In this brief review we focus on recent work on silicate, phosphate, and oxide materials with relatively low concentrations of paramagnetic ions, where spectral resolution can remain high enough to distinguish interactions between NMR-observed nuclides and one or more magnetic neighbors in different bonding configurations in the first, second, and even farther cation shells. We illustrate the types of information available, some of the limitations of this approach, and the great prospects for future experimental and theoretical work in this field. We give examples for the effects of paramagnetic transition metal, lanthanide, and actinide cation substitutions in simple oxides, pyrochlore, zircon, monazite, olivine, garnet, pyrochlores, and olivine structures.

6.
Solid State Nucl Magn Reson ; 79: 11-22, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27794215

RESUMO

This paper demonstrates the approach of using paramagnetic effects observed in NMR spectra to investigate the distribution of lanthanide dopant cations in YAG (yttrium aluminum garnet, Y3Al5O12) optical materials, as a complimentary technique to optical spectroscopy and other standard methods of characterization. We investigate the effects of Ce3+, Nd3+, Yb3+, Tm3+, and Tm3+-Cr3+ on 27Al and 89Y NMR spectra. We note shifted resonances for both AlO4 and AlO6 sites. In some cases, multiple shifted peaks are observable, and some of these can be empirically assigned to dopant cations in known configurations to the observed nuclides. In many cases, AlO6 peaks shifted by more than one magnetic neighbor can be detected. In general, we observe that the measured intensities of shifted resonances, when spinning sidebands are included, are consistent with predictions from models with dopant cations that are randomly distributed throughout the lattice. In at least one set of 27Al spectra, we identify two sub-peaks possibly resulting from two paramagnetic cations with magnetically coupled spin states neighboring the observed nucleus. We identify systematic changes in the spectra related to known parameters describing the magnetic effects of lanthanide cations, such as larger shift distances when the expectation value of electron spins is greater. We lastly comment on the promise of this technique in future analyses of laser and other crystalline oxide materials.

7.
J Chem Phys ; 144(4): 044502, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26827221

RESUMO

Aluminoborosilicate glasses containing relatively high field strength modifiers (Ca, La, and Y) have been compressed at pressures up to 3 GPa and near the glass transition temperature (Tg) and quenched to room temperature at high pressure followed by decompression. Structural changes were quantified with high-resolution (27)Al and (11)B MAS nuclear magnetic resonance at 14.1-18.8 T. The changes with pressure in Al and B coordinations in the recovered samples are quite large with more than 50% decreases in tetrahedral aluminum ((IV)Al) and 200%-300% increases in tetrahedral boron ((IV)B). Glasses with higher field strength modifiers (La and Y) contain more high coordinated aluminum ((V,V I)Al) at all pressures studied. More high coordinated boron also correlates with higher field strength modifier if all three compositions are compared on an isothermal basis. Although lowering fictive temperature and increasing pressure both increase Al and B coordinations, our study shows that the actual mechanisms for structural changes are most probably different for temperature and pressure effects. Using a rough thermodynamic model to extrapolate to higher pressures, it appears that a simple non-bridging oxygen (NBO) consumption mechanism is not sufficient to convert all the aluminum to octahedral and boron to tetrahedral coordination, suggesting other mechanisms for structural changes could occur at high pressure as NBO becomes depleted.

8.
Inorg Chem ; 52(21): 12605-15, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24131129

RESUMO

We present (31)P magic angle spinning nuclear magnetic resonance spectra of flux-grown solid solutions of La(1-x)Ce(x)PO4 (x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y(1-x)M(x)PO4 (M = V(n+), Ce(3+), Nd(3+), x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic V(n+), Ce(3+), and Nd(3+) in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensities of these peaks are related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La(3+) or Y(3+) with the paramagnetic substitutional species Ce(3+) and Nd(3+). The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the (31)P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii.

9.
ACS Appl Mater Interfaces ; 5(16): 7950-5, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23876200

RESUMO

Plasticity plays a crucial role in the mechanical behavior of engineering materials. For instance, energy dissipation during plastic deformation is vital to the sufficient fracture resistance of engineering materials. Thus, the lack of plasticity in brittle hybrid organic-inorganic glasses (hybrid glasses) often results in a low fracture resistance and has been a significant challenge for their integration and applications. Here, we demonstrate that hydrogenated amorphous silicon carbide films, a class of hybrid glasses, can exhibit a plasticity that is even tunable by controlling their molecular structure and thereby leads to an increased and adjustable fracture resistance in the films. We decouple the plasticity contribution from the fracture resistance of the films by estimating the "work-of-fracture" using a mean-field approach, which provides some insight into a potential connection between the onset of plasticity in the films and the well-known rigidity percolation threshold.


Assuntos
Compostos Inorgânicos de Carbono/química , Carbono/química , Compostos de Silício/química , Teste de Materiais , Relação Estrutura-Atividade , Propriedades de Superfície
10.
Solid State Nucl Magn Reson ; 40(2): 45-50, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21546224

RESUMO

The solid-state phase transitions of CuBr, CuI and NaNbO(3) can be readily observed using (63)Cu and (23)Na high-temperature magic-angle spinning nuclear magnetic resonance spectroscopy. Temperature has large, linear effects on the peak maximum of (63)Cu in each solid phase of CuBr and CuI, and there is large jump in shift across each phase transition. The (23)Na MAS NMR peak intensities and the line widths in NaNbO(3) also clearly show its high-temperature transition to the cubic phase. These data can be used to calibrate high-temperature MAS NMR probes up to 913 K, which is two hundred degrees higher than the commonly-used temperature calibration based on the chemical shift of (207)Pb in Pb(NO(3))(2).

11.
Phys Chem Chem Phys ; 11(32): 6906-17, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19652824

RESUMO

In oxide and silicate materials, particularly naturally-occurring minerals with contents of iron oxides greater than a few percent, paramagnetic impurities are well-known to broaden MAS NMR peaks, decrease relaxation times, and even cause overall loss of signal intensity. However, detection of resolved, discrete peaks that are shifted in frequency by nearby unpaired electron spins is rare in such systems. We report here high-resolution (27)Al and (29)Si spectra for synthetic and natural samples of pyrope garnet ([Mg,Fe](3)Al(2)Si(3)O(12)), the latter containing up to 3.5 wt% FeO. For both nuclides, spectra contain anomalous NMR peaks at frequencies that are 25 to 200 ppm from normal ranges, possibly through pseudocontact shifts induced by paramagnetic cations. Quantitation of peak areas suggests that signals from nuclides with such cations in their first shell may be broadened enough to be unobservable, while those with paramagnetics in their second cation shells may be substantially shifted. Overall spin-lattice relaxation rates are greatly enhanced by such impurities, and shifted resonances relax much faster than the unshifted main peaks. A high symmetry crystal structure (in this case cubic), which limits the number of different cation-cation distances in each shell, combined with a relatively low (non-cubic) symmetry for the sites hosting the magnetic cations, may be needed to readily detect such features.

12.
J Phys Chem B ; 110(25): 12427-37, 2006 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-16800569

RESUMO

Sodium germanate glasses are well-studied materials in which, unlike silicates but analogous to borates, the major structural consequence of alkali addition is generally thought to involve a coordination number increase of the network-forming Ge cations. However, the nature of this change, in particular quantifying fractions of nonbridging oxygens and of five- and/or six-coordinated Ge, has remained unresolved. We present here high-resolution 17O results, including triple-quantum MAS NMR (3QMAS), on a series of crystalline model compounds that allow the definition of ranges of chemical shifts corresponding to oxygens bonded to various coordinations of Ge. These include quartz- and rutile-structured GeO2, Na4Ge9O20, Na2Ge4O9, and Na2GeO3 (germanium dioxide, sodium enneagermanate, sodium tetragermanate, and sodium metagermanate). 3QMAS spectra of Na-germanate glasses ranging from 0% to 27% Na2O clearly show the development of partially resolved peaks as alkali is added, corresponding to signals from nonbridging oxygens (in the highest Na glasses) and to oxygen bridging between one four-coordinated and one higher coordinated Ge. As in conventional models of this system, nonbridging oxygen contents are much lower than in corresponding silicates. Although we do not directly distinguish between five- and six-coordinated Ge, modeling of bridging oxygen populations and comparison with measured speciation suggest that substantial proportions of both species are likely to be present. High-field 23Na MAS NMR shows systematic decreases in mean Na-O bond distance and/or coordination number with increasing alkali content that can be compared with published results for high-temperature liquids. These results, as well as comparison of molar volumes of glasses and high-temperature liquids, suggest the possibility of significant temperature effects on liquid structure.

13.
Solid State Nucl Magn Reson ; 27(1-2): 37-49, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15589726

RESUMO

In a series of sodium aluminoborate glasses, we have applied triple-quantum magic-angle spinning (3QMAS) 17O NMR to obtain high-resolution information about the connections among various network structural units, to explore the mixing of aluminum and boron species. Oxygen-17 3QMAS spectra reveal changes in connectivities between AlO4 ([4]Al), AlO5 and AlO6 ([5,6]Al), BO3 ([3]B) and BO4 ([4]B) units, by quantifying populations of bridging oxygens such as Al-O-Al, Al-O-B and B-O-B and of non-bridging oxygens. Several linkages such as [4]Al-O-[4]Al and three-coordinated oxygen associated with [5,6]Al in Al-O-Al, [4]Al-O-[4]B, [4]Al-O-[3]B and [5,6]Al-O-[3]B in Al-O-B as well as [4]B-O-[3]B and [3]B-O-[3]B in B-O-B can be distinguished for the first time. The fractions of these linkages were calculated from models of random mixing and of mixing with maximum avoidance of tetrahedral-tetrahedral linkages. The results suggest that the structure of all of glasses in this study is well approximated by the latter model. However, the energetic "penalty" for formation of [4]Al-O-[4]B may be somewhat less than for [4]Al-O-[4]Al and [4]B-O-[4]B. In general, the new results presented here are similar to those obtained on glasses in this system by 27Al{11B} REDOR NMR (J. Phys. Chem. B 104 (2000) 6541), but provide considerably more detail on network connectivity and ordering schemes.


Assuntos
Boratos/química , Vidro/química , Espectroscopia de Ressonância Magnética/métodos , Cimentos Dentários/química
14.
Science ; 297(5585): 1285-7, 2002 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-12193772
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...