Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 39053, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27982054

RESUMO

ß-Barrel proteins are found in the outer membrane (OM) of Gram-negative bacteria, chloroplasts and mitochondria. The assembly of these proteins into the corresponding OM is facilitated by a dedicated protein complex that contains a central conserved ß-barrel protein termed BamA in bacteria and Tob55/Sam50 in mitochondria. BamA and Tob55 consist of a membrane-integral C-terminal domain that forms a ß-barrel pore and a soluble N-terminal portion comprised of one (in Tob55) or five (in BamA) polypeptide transport-associated (POTRA) domains. Currently the functional significance of this difference and whether the homology between BamA and Tob55 can allow them to replace each other are unclear. To address these issues we constructed hybrid Tob55/BamA proteins with differently configured N-terminal POTRA domains. We observed that constructs harboring a heterologous C-terminal domain could not functionally replace the bacterial BamA or the mitochondrial Tob55 demonstrating species-specific requirements. Interestingly, the various hybrid proteins in combination with the bacterial chaperones Skp or SurA supported to a variable extent the assembly of bacterial ß-barrel proteins into the mitochondrial OM. Collectively, our findings suggest that the membrane assembly of various ß-barrel proteins depends to a different extent on POTRA domains and periplasmic chaperones.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolução Molecular , Mitocôndrias/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência , Especificidade da Espécie
2.
Appl Environ Microbiol ; 82(18): 5661-72, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27422828

RESUMO

UNLABELLED: Although anionic glycopolymers are crucial components of the Gram-positive cell envelope, the relevance of anionic glycopolymers for vegetative growth and morphological differentiation of Streptomyces coelicolor A3(2) is unknown. Here, we show that the LytR-CpsA-Psr (LCP) protein PdtA (SCO2578), a TagV-like glycopolymer transferase, has a dual function in the S. coelicolor A3(2) life cycle. Despite the presence of 10 additional LCP homologs, PdtA is crucial for proper sporulation. The integrity of the spore envelope was severely affected in a pdtA deletion mutant, resulting in 34% nonviable spores. pdtA deletion caused a significant reduction in the polydiglycosylphosphate content of the spore envelope. Beyond that, apical tip extension and normal branching of vegetative mycelium were severely impaired on high-salt medium. This growth defect coincided with the mislocalization of peptidoglycan synthesis. Thus, PdtA itself or the polydiglycosylphosphate attached to the peptidoglycan by the glycopolymer transferase PdtA also has a crucial function in apical tip extension of vegetative hyphae under stress conditions. IMPORTANCE: Anionic glycopolymers are underappreciated components of the Gram-positive cell envelope. They provide rigidity to the cell wall and position extracellular enzymes involved in peptidoglycan remodeling. Although Streptomyces coelicolor A3(2), the model organism for bacterial antibiotic production, is known to produce two distinct cell wall-linked glycopolymers, teichulosonic acid and polydiglycosylphosphate, the role of these glycopolymers in the S. coelicolor A3(2) life cycle has not been addressed so far. This study reveals a crucial function of the anionic glycopolymer polydiglycosylphosphate for the growth and morphological differentiation of S. coelicolor A3(2). Polydiglycosylphosphate is attached to the spore wall by the LytR-CpsA-Psr protein PdtA (SCO2578), a component of the Streptomyces spore wall-synthesizing complex (SSSC), to ensure the integrity of the spore envelope. Surprisingly, PdtA also has a crucial role in vegetative growth under stress conditions and is required for proper peptidoglycan incorporation during apical tip extension.


Assuntos
Glicosiltransferases/metabolismo , Polissacarídeos/análise , Esporos Bacterianos/crescimento & desenvolvimento , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/crescimento & desenvolvimento , Estresse Fisiológico , Meios de Cultura/química , Deleção de Genes , Glicosiltransferases/genética , Viabilidade Microbiana , Peptidoglicano/biossíntese , Esporos Bacterianos/química , Streptomyces coelicolor/química , Streptomyces coelicolor/fisiologia
3.
J Microbiol Methods ; 128: 52-57, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27401190

RESUMO

Cell wall glycopolymers (CWG) represent an important component of the Gram-positive cell envelope with many biological functions. The mycelial soil bacterium Streptomyces coelicolor A3(2) incorporates two distinct CWGs, polydiglycosylphosphate (PDP) and teichulosonic acid, into the cell wall of its vegetative mycelium but only little is known about their role in the complex life cycle of this microorganism. In this study we established assays to measure the total amount of CWGs in mycelial cell walls and spore walls, to quantify the individual CWGs and to determine the length of PDP. By applying these assays, we discovered that the relative amount of CWGs, especially of PDP, is reduced in spores compared to vegetative mycelium. Furthermore we found that PDP extracted from mycelial cell walls consisted of at least 19 repeating units, whereas spore walls contained substantially longer PDP polymers.


Assuntos
Parede Celular/química , Streptomyces coelicolor/química , Colorimetria , Galactose/química , Hexosaminas/química , Esporos Bacterianos/química , Streptomyces coelicolor/citologia , Ácidos Urônicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...