Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Air Soil Pollut ; 229(6): 208, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29950745

RESUMO

Nanotechnology is a dynamically developing field of scientific and industrial interest across the entire world, and the commercialization of nanoparticles (NPs) is rapidly expanding. Incorporation of nanotechnologies into a range of manufactured goods results in increasing concern regarding the subsequent release of engineered NPs into the environment. One of the biggest threats of using NPs is the transfer and magnification of these particles in the trophic chain. The aim of the studies was the evaluation of the distribution of TiO2 NP contamination in the aquatic ecosystem under laboratory conditions. Bioaccumulation of TiO2 NPs by plants (Elodea canadensis) and fish (Danio rerio) in the source of contamination was investigated. The studies were focused on the consequences of short-term water contamination with TiO2 NPs and the secondary contamination of the components of the investigated model ecosystem (plants, sediments). It was found that in the fish and the plants exposed to NP contamination, the amount of Ti was higher than in the control, indicating an effective bioaccumulation of NPs or ions originating from NPs. It was clearly shown that the NPs present in the sediments are available to plants and fish. Additionally, the aquatic plants, an important trophic level in the food chain, can accumulate NPs and be a source of NPs for higher organisms. It was concluded that even an incidental contamination of water by NPs may result in long-term consequences induced by the release of NPs.

2.
J Environ Radioact ; 164: 190-196, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27498168

RESUMO

Widespread use of products based on nanomaterials results in the release of nanoparticles into the environment. Nanoparticles can be taken up by organisms, but they can also coexist with other substances such as radionuclides, thus affecting their uptake or toxicity. In contrast, the sorption capacity of nanoparticles is exploited in water purification. The aim of the study was to investigate: (i) bioaccumulation of cesium and strontium by Pleurotus eryngii mycelia in the presence of alumina nanoparticles (Al2O3 NPs); and (ii) sorption of radionuclides on the surface of nanoparticles. For the experiments, living and dried mycelia were used to permit distinguishing between active uptake and passive sorption of the NPs by P. eryngii. The results are discussed from the perspective of the use of P. eryngii in the mycoextraction of radionuclides. The sorption capacity of Al2O3 NPs and the accumulation by P. eryngii mycelia differ for the applied radioisotopes. The efficiency of Cs and Sr sorption by alumina nanoparticles is 20% and 40%, respectively. Mycelia of P. eryngii have the ability to accumulate 30% of both radioisotopes from the medium. More than 60% of strontium can be removed accumulated from water by P. eryngii mycelia in coexistence with Al2O3 NPs, while the efficiency of cesium removal accumulation is negligible. It was found that alumina nanoparticles do not enhance uptake of radionuclides by P. eryngii mycelia; mycoextraction of radionuclides by mycelia and sorption by Al2O3 NPs are concurrent processes. There was no difference between live or dried mycelia uptake.


Assuntos
Óxido de Alumínio , Radioisótopos de Césio/metabolismo , Nanopartículas , Pleurotus/metabolismo , Radioisótopos de Estrôncio/metabolismo
3.
Water Air Soil Pollut ; 226(4): 126, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859065

RESUMO

Nanoparticles (NPs) are commonly used, and concerns about their possible adverse effects are being voiced as well. However, little is known about the fates of NPs released to the environment. The aim of the study was to (i) evaluate the ability of Sinapis alba and Lepidium sativum plants to take up platinum nanoparticles (Pt-NPs) and translocate them to aboveground organs, (ii) compare the accumulation efficiency of different forms of platinum and (iii) identify the forms in which platinum is stored in plant tissues. Plants were cultivated on medium supplemented with different concentrations of Pt-NPs and [Pt(NH3)4](NO3)2. Platinum content in plants was determined using inductively coupled plasma mass spectrometry. For the identification of the presence of Pt-NPs in plant tissues, gamma spectrometry following iron irradiation was applied. It was found that L. sativum and S. alba are tolerant to applied concentrations of Pt-NPs and have an ability to take up platinum from the medium and translocate it to aboveground organs. The highest concentration of platinum was observed in plant roots (reaching 8.7 g kg-1 for S. alba). We tentatively conclude that platinum is accumulated as nanoparticles. The obtained results suggest future application of plants for phytoremediation and recovery of noble metal nanoparticles.

4.
Bull Environ Contam Toxicol ; 94(5): 554-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25742926

RESUMO

The growing use of nanoparticles in a wide range of products has resulted in their release into the aquatic environment; therefore, an understanding of the toxic effects of nanoparticles on aquatic organisms is of permanent importance. The aim of this study was to evaluate the toxicity of silver and platinum nanoparticles toward the freshwater microalga, Pseudokirchneriella subcapitata. Algal growth and photosynthetic pigments were determined to quantitate the effects of varying concentrations of Ag and Pt nanoparticles. The silver nanoparticles were much more toxic than the platinum ones. The concentrations causing total inhibition of algal growth were 5.0 and 22.2 mg L(-1), respectively. Similar results were obtained by analyzing the concentration of photosynthetic pigments in P. subcapitata exposed to nanoparticles. Thus, simple spectrophotometric determination of chlorophyll is a convenient tool for the analysis of nanoparticle toxicity to algae.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Nanopartículas/toxicidade , Platina/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/fisiologia , Clorofila/metabolismo , Clorófitas/metabolismo , Clorófitas/fisiologia , Água Doce/química , Fotossíntese/efeitos dos fármacos
5.
Int J Phytoremediation ; 10(6): 503-14, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19260229

RESUMO

This pilot study presents preliminary results on interrelations between alkali and alkaline earth elements during their transfer to mycelium and fruitbodies of saprophytic fungi. The accumulation and distribution of four elements (cesium, potassium, sodium, and calcium) was evaluated in king oyster mushroom (Pleurotus eryngii) cultivated under controlled conditions. Elemental composition of caps, stipes, and the substrate was analyzed by atomic absorption/emission spectroscopy to evaluate discrimination, concentration, and transfer factors. The transfer factors determined for all the investigated elements were different and can be put in the following order: Cs > K > Na > Ca. There has been a higher accumulation of cesium in caps than in stipes. Distribution of cesium in fruitbodies depended on the presence of other ions in the substrate. The addition of Ca2+ limited the transport of cesium and potassium from stipes to caps. Sodium and calcium were mainly accumulated in the stipes. In a control experiment, without supplementation with K+, Na+, and Ca2+, approximately 62% of the cesium present in the substrate was extracted by mycelium and transported to the fruitbodies. Possible applications of fruiting saprophytic fungi in bioremediation are discussed.


Assuntos
Agaricales/metabolismo , Biodegradação Ambiental , Metais/química , Agaricales/química , Cálcio/química , Cálcio/metabolismo , Césio/química , Césio/metabolismo , Projetos Piloto , Potássio/química , Potássio/metabolismo , Sódio/química , Sódio/metabolismo , Poluentes do Solo/química , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...