Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 82019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31742557

RESUMO

GABAergic fast-spiking parvalbumin-positive (PV) interneurons are frequently myelinated in the cerebral cortex. However, the factors governing the topography of cortical interneuron myelination remain incompletely understood. Here, we report that segmental myelination along neocortical interneuron axons is strongly predicted by the joint combination of interbranch distance and local axon caliber. Enlargement of PV+ interneurons increased axonal myelination, while reduced cell size led to decreased myelination. Next, we considered regular-spiking SOM+ cells, which normally have relatively shorter interbranch distances and thinner axon diameters than PV+ cells, and are rarely myelinated. Consistent with the importance of axonal morphology for guiding interneuron myelination, enlargement of SOM+ cell size dramatically increased the frequency of myelinated axonal segments. Lastly, we confirm that these findings also extend to human neocortex by quantifying interneuron axonal myelination from ex vivo surgical tissue. Together, these findings establish a predictive model of neocortical GABAergic interneuron myelination determined by local axonal morphology.


Assuntos
Axônios/metabolismo , Interneurônios/metabolismo , Bainha de Mielina/metabolismo , Neocórtex/metabolismo , Parvalbuminas/metabolismo , Potenciais de Ação/fisiologia , Idoso de 80 Anos ou mais , Animais , Axônios/fisiologia , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Humanos , Interneurônios/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neocórtex/citologia , Parvalbuminas/genética , Técnicas de Patch-Clamp
2.
Nat Neurosci ; 22(8): 1235-1247, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31235931

RESUMO

Mutations affecting the gene encoding the ubiquitin ligase UBE3A cause Angelman syndrome. Although most studies focus on the synaptic function of UBE3A, we show that UBE3A is highly enriched in the nucleus of mouse and human neurons. We found that the two major isoforms of UBE3A exhibit highly distinct nuclear versus cytoplasmic subcellular localization. Both isoforms undergo nuclear import through direct binding to PSMD4 (also known as S5A or RPN10), but the amino terminus of the cytoplasmic isoform prevents nuclear retention. Mice lacking the nuclear UBE3A isoform recapitulate the behavioral and electrophysiological phenotypes of Ube3am-/p+ mice, whereas mice harboring a targeted deletion of the cytosolic isoform are unaffected. Finally, we identified Angelman syndrome-associated UBE3A missense mutations that interfere with either nuclear targeting or nuclear retention of UBE3A. Taken together, our findings elucidate the mechanisms underlying the subcellular localization of UBE3A, and indicate that the nuclear UBE3A isoform is the most critical for the pathophysiology of Angelman syndrome.


Assuntos
Síndrome de Angelman/genética , Síndrome de Angelman/psicologia , Comportamento Animal , Ubiquitina-Proteína Ligases/genética , Animais , Proteínas de Transporte/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/genética , Citosol/enzimologia , Fenômenos Eletrofisiológicos/genética , Feminino , Humanos , Isoenzimas/genética , Masculino , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto/genética , Comportamento de Nidação , Neurônios/enzimologia , Desempenho Psicomotor , Proteínas de Ligação a RNA , Natação/psicologia , Dedos de Zinco
3.
J Neurosci ; 38(15): 3631-3642, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29507147

RESUMO

Axonal myelination of neocortical pyramidal neurons is modulated dynamically by neuronal activity. Recent studies have shown that a substantial proportion of neocortical myelin content is contributed by fast-spiking, parvalbumin (PV)-positive interneurons. However, it remains unknown whether the myelination of PV+ interneurons is also modulated by intrinsic activity. Here, we used cell-type-specific Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in adult mice to activate a sparse population of medial prefrontal cortex (mPFC) PV+ interneurons. Using single-cell axonal reconstructions, we found that DREADD-stimulated PV+ interneurons exhibited a nearly two-fold increase in total length of myelination, predominantly mediated by a parallel increase of axonal arborization and number of internodes. In contrast, the distribution of axonal interbranch segment distance and myelin internode length were not altered significantly. Topographical analysis revealed that myelination of DREADD-stimulated cells extended to higher axonal branch orders while retaining a similar interbranch distance threshold for myelination. Together, our results demonstrate that chemogenetically induced neuronal activity increases the myelination of neocortical PV+ interneurons mediated at least in part by an elaboration of their axonal morphology.SIGNIFICANCE STATEMENT Myelination is the wrapping of an axon to optimize conduction velocity in an energy-efficient manner. Previous studies have shown that myelination of neocortical pyramidal neurons is experience and activity dependent. We now show that activity-dependent myelin plasticity in the adult neocortex extends to parvalbumin (PV)-expressing fast-spiking interneurons. Chemogenetic stimulation of PV interneurons in the medial prefrontal cortex (mPFC) significantly enhanced axonal myelination, which was paralleled by an increase in axonal arborization. This suggests that activity-dependent axonal plasticity may involve changes in both structural morphology and myelination. Such multicomponent plasticity reveals an unexpected repertoire of anatomical parameters available for optimizing and adapting neuronal networks in response to experience.


Assuntos
Interneurônios/metabolismo , Potenciais da Membrana , Bainha de Mielina/metabolismo , Animais , Axônios/metabolismo , Axônios/fisiologia , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/genética , Parvalbuminas/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia
4.
Sci Rep ; 7(1): 1256, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28455524

RESUMO

RASopathies, characterized by germline mutations in genes encoding proteins of the RAS-ERK signaling pathway, show overlapping phenotypes, which manifest themselves with a varying severity of intellectual disability. However, it is unclear to what extent they share the same downstream pathophysiology that underlies the cognitive deficits. Costello syndrome (CS) is a rare RASopathy caused by activating mutations in the HRAS gene. Here we investigated the mechanisms underlying the cognitive deficits of HRas G12V/G12V mice. HRas G12V/G12V mice showed robust upregulation of ERK signaling, neuronal hypertrophy, increased brain volume, spatial learning deficits, and impaired mGluR-dependent long-term depression (LTD). In contrast, long-term potentiation (LTP), which is affected in other RASopathy mouse models was unaffected. Treatment with lovastatin, a HMG-CoA-Reductase inhibitor which has been shown to rescue the behavioral phenotypes of mouse models of NF1 and Noonan syndrome, was unable to restore ERK signaling and the cognitive deficits of HRas G12V/G12V mice. Administration of a potent mitogen-activated protein kinase (MEK) inhibitor rescued the ERK upregulation and the mGluR-LTD deficit of HRas G12V/G12V mice, but failed to rescue the cognitive deficits. Taken together, this study indicates that the fundamental molecular and cellular mechanisms underlying the cognitive aspects of different RASopathies are remarkably distinct, and may require disease specific treatments.


Assuntos
Disfunção Cognitiva/fisiopatologia , Síndrome de Costello/fisiopatologia , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Encéfalo/patologia , Depressão , Modelos Animais de Doenças , Hipertrofia , Sistema de Sinalização das MAP Quinases , Camundongos , Neurônios/patologia
5.
Nat Commun ; 7: 12627, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581745

RESUMO

Loss-of-function mutations in the gene encoding the postsynaptic scaffolding protein SHANK2 are a highly penetrant cause of autism spectrum disorders (ASD) involving cerebellum-related motor problems. Recent studies have implicated cerebellar pathology in the aetiology of ASD. Here we evaluate the possibility that cerebellar Purkinje cells (PCs) represent a critical locus of ASD-like pathophysiology in mice lacking Shank2. Absence of Shank2 impairs both PC intrinsic plasticity and induction of long-term potentiation at the parallel fibre to PC synapse. Moreover, inhibitory input onto PCs is significantly enhanced, most prominently in the posterior lobe where simple spike (SS) regularity is most affected. Using PC-specific Shank2 knockouts, we replicate alterations of SS regularity in vivo and establish cerebellar dependence of ASD-like behavioural phenotypes in motor learning and social interaction. These data highlight the importance of Shank2 for PC function, and support a model by which cerebellar pathology is prominent in certain forms of ASD.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/patologia , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Células de Purkinje/patologia , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Soc Cogn Affect Neurosci ; 10(5): 672-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25140049

RESUMO

Two studies examined whether social identity processes, i.e. group identification and social identity threat, amplify the degree to which people attend to social category information in early perception [assessed with event-related brain potentials (ERPs)]. Participants were presented with faces of Muslims and non-Muslims in an evaluative priming task while ERPs were measured and implicit evaluative bias was assessed. Study 1 revealed that non-Muslims showed stronger differentiation between ingroup and outgroup faces in both early (N200) and later processing stages (implicit evaluations) when they identified more strongly with their ethnic group. Moreover, identification effects on implicit bias were mediated by intergroup differentiation in the N200. In Study 2, social identity threat (vs control) was manipulated among Muslims. Results revealed that high social identity threat resulted in stronger differentiation of Muslims from non-Muslims in early (N200) and late (implicit evaluations) processing stages, with N200 effects again predicting implicit bias. Combined, these studies reveal how seemingly bottom-up early social categorization processes are affected by individual and contextual variables that affect the meaning of social identity. Implications of these results for the social identity perspective as well as social cognitive theories of person perception are discussed.


Assuntos
Ego , Face , Identificação Social , Percepção Social , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Humanos , Islamismo , Masculino , Estimulação Luminosa , População Branca , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...