Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thromb Haemost ; 21(3): 629-638, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696180

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with excessive coagulation, thrombosis, and mortality. OBJECTIVE: To provide insight into mechanisms that contribute to excessive coagulation in coronavirus 2019 (COVID-19) disease. PATIENTS/METHODS: Blood from COVID-19 patients was investigated for coagulation-related gene expression and functional activities. RESULTS: Single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from severe COVID-19 patients revealed a 5.2-fold increase in tissue factor (TF [F3 gene]) transcript expression levels (P < .05), the trigger of extrinsic coagulation; a 7.7-fold increase in C1-inhibitor (SERPING1 gene; P < .01) transcript expression levels, an inhibitor of intrinsic coagulation; and a 4.4-fold increase in anticoagulant thrombomodulin (TM [THBD gene]) transcript expression levels (P < .001). Bulk RNA-seq analysis of sorted CD14+ monocytes on an independent cohort of COVID-19 patients confirmed these findings (P < .05). Indicative of excessive coagulation, 41% of COVID-19 patients' plasma samples contained high D-dimer levels (P < .0001); of these, 19% demonstrated extracellular vesicle TF activity (P = .109). COVID-19 patients' ex vivo plasma-based thrombin generation correlated positively with D-dimer levels (P < .01). Plasma procoagulant extracellular vesicles were elevated ∼9-fold in COVID-19 patients (P < .01). Public scRNA-seq data sets from bronchoalveolar lung fluid and our peripheral blood mononuclear cell scRNA-seq data show CD14+ monocytes/macrophages TF transcript expression levels are elevated in severe but not mild or moderate COVID-19 patients. CONCLUSIONS: Beyond local lung injury, SARS-CoV-2 infection increases systemic TF (F3) transcript levels and elevates circulating extracellular vesicles that likely contribute to disease-associated coagulation, thrombosis, and related mortality.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Vesículas Extracelulares , Trombose , Humanos , Vesículas Extracelulares/metabolismo , Leucócitos Mononucleares/metabolismo , SARS-CoV-2 , Tromboplastina/metabolismo
2.
Front Mol Biosci ; 10: 1232573, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322710

RESUMO

The ability of gut microbial metabolites to influence the host is increasingly recognized. The microbiota extensively metabolizes the three aromatic amino acids, tryptophan, tyrosine, and phenylalanine. Previously we have found that a metabolite of tyrosine, 4-OH-phenylpropionic acid, can enhance type I interferon (IFN) signaling and protect from influenza pathogenesis in a murine model. Herein we screened 17 related aromatic amino acid metabolites for effects on IFN signaling in human lung epithelial cells and monocytes alone and in the presence of IFN-ß, influenza, and LPS. While the tryptophan family metabolites reduced IFN signaling in both cell types, the tyrosine and phenylalanine metabolites had varied effects, which were cell-type dependent. Pooled treatment of all these metabolites reduced IFN signaling in both cell types and suggested a tryptophan metabolite effect dominance. Strikingly, when all the metabolites were pooled together, we found reduced influenza recovery in both cell types. RNA sequencing further validated reduced viral loads and decreased IFN signaling. Single gene silencing of significantly upregulated genes identified by RNA sequencing (EGR2, ATP6VD02, SPOCK1, and IL31RA) did not completely abrogate the metabolite induced decrease in IFN signaling. However, these upregulated targets suggested a mechanistic link to TGF-beta signaling. Treatment with a TGF-beta inhibitor and combined targeted gene silencing led to a significant reversal of metabolite induced IFN signaling suppression. Finally, we demonstrated that intranasal administration of these metabolites prior to influenza infection led to reduced animal morbidity, viral titers, and inflammation. Our work implies that microbial metabolites can alter IFN signaling mechanistically through TGF-beta and promote beneficial outcomes during influenza infection.

3.
Front Pediatr ; 10: 953150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061377

RESUMO

Annually influenza causes a global epidemic resulting in 290,000 to 650,000 deaths and extracts a massive toll on healthcare and the economy. Infants and children are more susceptible to infection and have more severe symptoms than adults likely mitigated by differences in their innate and adaptive immune responses. While it is unclear the exact mechanisms with which the young combat influenza, it is increasingly understood that their immune responses differ from adults. Specifically, underproduction of IFN-γ and IL-12 by the innate immune system likely hampers viral clearance while upregulation of IL-6 may create excessive damaging inflammation. The infant's adaptive immune system preferentially utilizes the Th-2 response that has been tied to γδ T cells and their production of IL-17, which may be less advantageous than the adult Th-1 response for antiviral immunity. This differential immune response of the young is considered to serve as a unique evolutionary adaptation such that they preferentially respond to infection broadly rather than a pathogen-specific one generated by adults. This unique function of the young immune system is temporally, and possibly mechanistically, tied to the microbiota, as they both develop in coordination early in life. Additional research into the relationship between the developing microbiota and the immune system is needed to develop therapies effective at combating influenza in the youngest and most vulnerable of our population.

4.
Nat Commun ; 13(1): 882, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169146

RESUMO

SARS-CoV-2 triggers a complex systemic immune response in circulating blood mononuclear cells. The relationship between immune cell activation of the peripheral compartment and survival in critical COVID-19 remains to be established. Here we use single-cell RNA sequencing and Cellular Indexing of Transcriptomes and Epitomes by sequence mapping to elucidate cell type specific transcriptional signatures that associate with and predict survival in critical COVID-19. Patients who survive infection display activation of antibody processing, early activation response, and cell cycle regulation pathways most prominent within B-, T-, and NK-cell subsets. We further leverage cell specific differential gene expression and machine learning to predict mortality using single cell transcriptomes. We identify interferon signaling and antigen presentation pathways within cDC2 cells, CD14 monocytes, and CD16 monocytes as predictors of mortality with 90% accuracy. Finally, we validate our findings in an independent transcriptomics dataset and provide a framework to elucidate mechanisms that promote survival in critically ill COVID-19 patients. Identifying prognostic indicators among critical COVID-19 patients holds tremendous value in risk stratification and clinical management.


Assuntos
COVID-19/imunologia , Imunidade Celular/imunologia , Idoso , Idoso de 80 Anos ou mais , COVID-19/genética , COVID-19/mortalidade , Estado Terminal , Feminino , Expressão Gênica , Humanos , Imunidade Celular/genética , Leucócitos Mononucleares/imunologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Prognóstico , Reprodutibilidade dos Testes , SARS-CoV-2/patogenicidade , Análise de Célula Única , Transcriptoma/imunologia
6.
J Immunol ; 206(12): 3000-3009, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34078711

RESUMO

SARS-CoV-2, the virus that has caused the COVID-19 pandemic, robustly activates the host immune system in critically ill patients. Understanding how the virus engages the immune system will facilitate the development of needed therapeutic strategies. In this study, we demonstrate both in vitro and in vivo that the SARS-CoV-2 surface proteins spike (S) and envelope (E) activate the key immune signaling IFN pathway in both human and mouse immune and epithelial cells independent of viral infection and replication. These proteins induce reactive oxidative species generation and increases in human- and murine-specific, IFN-responsive cytokines and chemokines, similar to their upregulation in critically ill COVID-19 patients. Induction of IFN signaling is dependent on canonical but discrepant inflammatory signaling mediators, as the activation induced by S is dependent on IRF3, TBK1, and MyD88, whereas that of E is largely MyD88 independent. Furthermore, these viral surface proteins, specifically E, induced peribronchial inflammation and pulmonary vasculitis in a mouse model. Finally, we show that the organized inflammatory infiltrates are dependent on type I IFN signaling, specifically in lung epithelial cells. These findings underscore the role of SARS-CoV-2 surface proteins, particularly the understudied E protein, in driving cell specific inflammation and their potential for therapeutic intervention.


Assuntos
Proteínas do Envelope de Coronavírus/imunologia , Células Epiteliais/imunologia , Inflamação/imunologia , Interferon Tipo I/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Linhagem Celular Tumoral , Células Epiteliais/virologia , Feminino , Humanos , Masculino , Camundongos
7.
Acta Neuropathol Commun ; 9(1): 40, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33691793

RESUMO

The influence of the gut microbiota on traumatic brain injury (TBI) is presently unknown. This knowledge gap is of paramount clinical significance as TBI patients are highly susceptible to alterations in the gut microbiota by antibiotic exposure. Antibiotic-induced gut microbial dysbiosis established prior to TBI significantly worsened neuronal loss and reduced microglia activation in the injured hippocampus with concomitant changes in fear memory response. Importantly, antibiotic exposure for 1 week after TBI reduced cortical infiltration of Ly6Chigh monocytes, increased microglial pro-inflammatory markers, and decreased T lymphocyte infiltration, which persisted through 1 month post-injury. Moreover, microbial dysbiosis was associated with reduced neurogenesis in the dentate gyrus 1 week after TBI. By 3 months after injury (11 weeks after discontinuation of the antibiotics), we observed increased microglial proliferation, increased hippocampal neuronal loss, and modulation of fear memory response. These data demonstrate that antibiotic-induced gut microbial dysbiosis after TBI impacts neuroinflammation, neurogenesis, and fear memory and implicate gut microbial modulation as a potential therapeutic intervention for TBI.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Disbiose/complicações , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade , Neurogênese , Animais , Bactérias/genética , Modelos Animais de Doenças , Disbiose/microbiologia , Disbiose/fisiopatologia , Hipocampo/patologia , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Microglia
9.
Science ; 357(6350): 498-502, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28774928

RESUMO

The microbiota is known to modulate the host response to influenza infection through as-yet-unclear mechanisms. We hypothesized that components of the microbiota exert effects through type I interferon (IFN), a hypothesis supported by analysis of influenza in a gain-of-function genetic mouse model. Here we show that a microbially associated metabolite, desaminotyrosine (DAT), protects from influenza through augmentation of type I IFN signaling and diminution of lung immunopathology. A specific human-associated gut microbe, Clostridium orbiscindens, produced DAT and rescued antibiotic-treated influenza-infected mice. DAT protected the host by priming the amplification loop of type I IFN signaling. These findings show that specific components of the enteric microbiota have distal effects on responses to lethal infections through modulation of type I IFN.


Assuntos
Clostridium perfringens/metabolismo , Microbioma Gastrointestinal/imunologia , Interferon Tipo I/imunologia , Infecções por Orthomyxoviridae/imunologia , Fenilpropionatos/imunologia , Animais , Linhagem Celular , Proteínas de Ligação ao GTP/genética , Interações Hospedeiro-Patógeno/imunologia , Pulmão/imunologia , Camundongos , Camundongos Knockout , Fenilpropionatos/metabolismo , Transdução de Sinais
10.
Curr Opin Immunol ; 31: 102-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25459001

RESUMO

A potential role for viral and bacterial-viral interactions in the pathogenesis of autoimmune disease has been long recognized. Recently, intensive investigation has begun to decipher interactions between specific microbes with the host that contribute toward autoimmunity. This work has primarily focused on known viral and bacterial pathogens. A major challenge is to determine the role of bacteria that are typically considered as commensals as well as chronic viruses. Furthermore, equally challenging is to prove causality given the potential complexity of microbe-microbe interactions. Important initial contributions to this field have shown that specific interactions of microbes with hosts that contain a background of genetic susceptibility can play a role in autoimmune pathogenesis. In this review, we describe principles of immune tolerance with a focus on its breakdown during pathogenic as well as commensal relationships between the host and the microbial world.


Assuntos
Doenças Autoimunes , Bactérias/imunologia , Infecções Bacterianas , Predisposição Genética para Doença , Viroses , Vírus/imunologia , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/virologia , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Infecções Bacterianas/virologia , Humanos , Viroses/genética , Viroses/imunologia , Viroses/microbiologia
11.
J Virol ; 84(7): 3711-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20071569

RESUMO

Cytokines regulate viral gene expression with important consequences for viral replication and pathogenesis. Gamma interferon (IFN-gamma) is a key regulator of chronic murine gammaherpesvirus 68 (gammaHV68) infection and a potent inhibitor of gammaHV68 reactivation from latency. Macrophages are the cell type that is responsive to the IFN-gamma-mediated control of gammaHV68 reactivation; however, the molecular mechanism of this IFN-gamma action is undefined. Here we report that IFN-gamma inhibits lytic replication of gammaHV68 in primary bone marrow-derived macrophages and decreases transcript levels for the essential lytic switch gene 50. Interestingly, IFN-gamma suppresses the activity of the two known gene 50 promoters, demonstrating that an inflammatory cytokine can directly regulate the promoters for the gammaHV68 lytic switch gene. Stat1, but not IFN-alpha/beta signaling, is required for IFN-gamma action. Moreover, Stat1 deficiency increases basal gammaHV68 replication, gene 50 expression, and promoter activity. Together, these data identify IFN-gamma and Stat1 as being negative regulators of the gammaHV68 lytic cycle and raise the possibility that gammaHV68 maintains IFN-gamma/Stat1-responsive gene 50 promoters to facilitate cell-extrinsic control over the interchange between the lytic and latent cycles.


Assuntos
Gammaherpesvirinae/genética , Interferon gama/farmacologia , Regiões Promotoras Genéticas , Fator de Transcrição STAT1/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL
12.
J Virol ; 81(11): 6134-40, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17360749

RESUMO

Gammaherpesviruses are important pathogens whose lifelong survival in the host depends critically on their capacity to establish and reactivate from latency, processes regulated by both viral genes and the host immune response. Previous work has demonstrated that gamma interferon (IFN-gamma) is a key regulator of chronic infection with murine gammaherpesvirus 68 (gammaHV68), a virus that establishes latent infection in B lymphocytes, macrophages, and dendritic cells. In mice deficient in IFN-gamma or the IFN-gamma receptor, gammaHV68 gene expression is altered during chronic infection, and peritoneal cells explanted from these mice reactivate more efficiently ex vivo than cells derived from wild-type mice. Furthermore, treatment with IFN-gamma inhibits reactivation of gammaHV68 from latently infected wild-type peritoneal cells, and depletion of IFN-gamma from wild-type mice increases the efficiency of reactivation of explanted peritoneal cells. These profound effects of IFN-gamma on chronic gammaHV68 latency and reactivation raise the question of which cells respond to IFN-gamma to control chronic gammaHV68 infection. Here, we show that IFN-gamma inhibited reactivation of peritoneal cells and spleen cells harvested from mice lacking B lymphocytes, but not wild-type spleen cells, suggesting that IFN-gamma may inhibit reactivation in a cell type-specific manner. To directly test this hypothesis, we expressed the diphtheria toxin receptor specifically on either B lymphocytes or macrophages and used diphtheria toxin treatment to deplete these specific cells in vivo and in vitro after establishing latency. We demonstrate that macrophages, but not B cells, are responsive to IFN-gamma-mediated suppression of gammaHV68 reactivation. These data indicate that the regulation of gammaherpesvirus latency by IFN-gamma is cell type specific and raise the possibility that cell type-specific immune deficiency may alter latency in distinct and important ways.


Assuntos
Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Interferon gama/fisiologia , Ativação Viral/imunologia , Latência Viral/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/virologia , Gammaherpesvirinae/metabolismo , Infecções por Herpesviridae/patologia , Humanos , Macrófagos/imunologia , Macrófagos/virologia
13.
Virology ; 353(1): 210-9, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16797052

RESUMO

Chronic gamma-herpesvirus infection is a dynamic process involving latent infection, reactivation from latency, and low level persistent replication. The gamma-herpesviruses maintain latent infection in restricted subsets of hematopoietic cells as a result of an intricate balance between host factors that suppress infection and viral factors that facilitate evasion of the immune response. Immune effectors limit reactivation and subsequent replication events, and the adaptive immune response ultimately restricts infection to a level compatible with life-long infection. However, it has not been possible to determine whether the immune system constrains chronic infection by directly targeting latently infected cells in vivo due to the complex nature of chronic infection. To begin to address this issue, we generated a murine gamma-herpesvirus 68 (gammaHV68) deficient in its ability to replicate or undergo reactivation from latency via a mutation in the single-stranded DNA binding protein encoded by ORF6. Even in the absence of lytic replication, this virus established long-term infection in peritoneal cells of wild-type mice at levels identical to that of wild-type gammaHV68, and generated an immune response that was sufficient to protect against secondary challenge with wild-type gammaHV68. Nevertheless, the number of latently infected cells was not significantly altered in mice deficient in T cells or both T cells and B cells, demonstrating that the adaptive immune system is incapable of altering infection with a virus lacking the capacity for lytic replication and reactivation from latency. Thus, these data support the conclusion that latency is immunologically silent.


Assuntos
Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Imunidade/fisiologia , Replicação Viral/fisiologia , Animais , Linfócitos B/imunologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Doença Crônica , Gammaherpesvirinae/genética , Gammaherpesvirinae/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Linfócitos T/imunologia , Latência Viral , Replicação Viral/genética
14.
J Virol ; 80(1): 192-200, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16352543

RESUMO

Establishment of latent infection and reactivation from latency are critical aspects of herpesvirus infection and pathogenesis. Interfering with either of these steps in the herpesvirus life cycle may offer a novel strategy for controlling herpesvirus infection and associated disease pathogenesis. Prior studies show that mice deficient in gamma interferon (IFN-gamma) or the IFN-gamma receptor have elevated numbers of cells reactivating from murine gammaherpesvirus 68 (gammaHV68) latency, produce infectious virus after the establishment of latency, and develop large-vessel vasculitis. Here, we demonstrate that IFN-gamma is a powerful inhibitor of reactivation of gammaHV68 from latency in tissue culture. In vivo, IFN-gamma controls viral gene expression during latency. Importantly, depletion of IFN-gamma in latently infected mice results in an increased frequency of cells reactivating virus. This demonstrates that IFN-gamma is important for immune surveillance that limits reactivation of gammaHV68 from latency.


Assuntos
Gammaherpesvirinae/fisiologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Interferon gama/farmacologia , Latência Viral/efeitos dos fármacos , Animais , Gammaherpesvirinae/efeitos dos fármacos , Gammaherpesvirinae/genética , Infecções por Herpesviridae/imunologia , Receptores de Interferon/deficiência , Receptores de Interferon/genética , Latência Viral/genética , Latência Viral/imunologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...