Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(9)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37763893

RESUMO

With the increasing processing power of micro-electronic components and increasing spatial limitations, ensuring sufficient heat dissipation has become a crucial task. This work presents a microscopic approach to increasing the surface area through periodic surface structures. Microstructures with a periodic distance of 8.5 µm are fabricated via Direct Laser Interference Patterning (DLIP) on stainless steel plates with a nanosecond-pulsed infrared laser and are characterized by their developed interfacial area ratio. The optimal structuring parameters for increasing the surface area were investigated, reaching peak-to-valley depths up to 12.8 µm and increasing surface area by up to 394%. Heat dissipation in a natural convection environment was estimated by measuring the output voltage of a Peltier element mounted between a hot plate and a textured sample. The resulting increase in output voltage compared to an unstructured sample was correlated to the structure depth and developed interfacial area ratio, finding a maximum increase of 51.4%. Moreover, it was shown that the output voltage correlated well with the structure depth and surface area.

2.
Sci Rep ; 11(1): 14540, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267290

RESUMO

Functional laser texturing by means of Direct Laser Interference Patterning is one of the most efficient approaches to fabricate well-defined micro textures which mimic natural surfaces, such as the lotus effect for self-cleaning properties or shark skin for reduced friction. While numerous technical and theoretical improvements have been demonstrated, strategies for process monitoring are yet to be implemented in DLIP, for instance aiming to treat complex and non-plane surfaces. Over the last 35 years, it has been shown that the sound pressure generated by a laser beam hitting a surface and producing ablation can be detected and analysed using simple and commercially available transducers and microphones. This work describes the detection and analysis of photo-acoustic signals acquired from airborne acoustic emission during DLIP as a direct result of the laser-material interaction. The study includes the characterization of the acoustic emission during the fabrication of line-like micro textures with different spatial periods and depths, the interpretation the spectral signatures deriving from single spot and interference ablation, as well as a detailed investigation of the vertical extent of the interference effect based on the ablated area and its variation with the interference period. The results show the possibility to develop an autofocusing system using only the signals from the acoustic emission for 3D processing, as well as the possibility to predict deviations in the DLIP processing parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...