Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 3(5)2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25999403

RESUMO

The mechanism for early hypertension in polycystic kidney disease (PKD) has not been elucidated. One potential pathway that may contribute to the elevation in blood pressure in PKD is the activation of the intrarenal renin-angiotensin-system (RAS). For example, it has been shown that kidney cyst and cystic fluid contains renin, angiotensin II (AngII), and angiotensinogen (Agt). Numerous studies suggest that ciliary dysfunction plays an important role in PKD pathogenesis. However, it is unknown whether the primary cilium affects the intrarenal RAS in PKD. The purpose of this study was to determine whether loss of cilia or polycystin 1 (PC1) increases intrarenal RAS in mouse model of PKD. Adult Ift88 and Pkd1 conditional floxed allele mice with or without cre were administered tamoxifen to induce global knockout of the gene. Three months after tamoxifen injection, kidney tissues were examined by histology, immunofluorescence, western blot, and mRNA to assess intrarenal RAS components. SV40 immortalized collecting duct cell lines from hypomorphic Ift88 mouse were used to assess intrarenal RAS components in collecting duct cells. Mice without cilia and PC1 demonstrated increased kidney cyst formation, systolic blood pressure, prorenin, and kidney and urinary angiotensinogen levels. Interestingly immunofluorescence study of the kidney revealed that the prorenin receptor was localized to the basolateral membrane of principal cells in cilia (-) but not in cilia (+) kidneys. Collecting duct cAMP responses to AngII administration was greater in cilia (-) vs. cilia (+) cells indicating enhanced intrarenal RAS activity in the absence of cilia. These data suggest that in the absence of cilia or PC1, there is an upregulation of intrarenal RAS components and activity, which may contribute to elevated blood pressure in PKD.

2.
Am J Physiol Renal Physiol ; 309(1): F79-87, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25904703

RESUMO

In polycystic kidney disease (PKD), the rate of cyst formation and disease progression is highly variable. The lack of predictability in disease progression may be due to additional environmental factors or pathophysiological processes called "third hits." Diabetes is a growing epidemic, and recent studies suggest that PKD patients may be at an increased risk for this disease. We sought to determine if hyperglycemia enhances the initiation and rate of cystogenesis. Tamoxifen was administered to adult Ift88 conditional floxed allele mice to induce cilia loss in the presence of Cre. Subsequent administration of streptozotocin resulted in equivalent hyperglycemia in cilia(+) and cilia(-) mice. Hyperglycemia with loss of cilia increased the rate of cyst formation and cell proliferation. Structural and functional alterations in the kidney, including focal glomerular foot process effacement, interstitial inflammation, formation of primitive renal tubules, polyuria, and increased proteinuria, were also observed in hyperglycemic cilia(-) mice. Gene array analysis indicated enhanced Wnt and epithelial-to-mesenchymal transition signaling in the kidney of hyperglycemic cilia(-) mice. These data show that hyperglycemia, in the absence of cilia, results in renal structural and functional damage and accelerates cystogenesis, suggesting that diabetes is a risk factor in the progression of PKD.


Assuntos
Hiperglicemia/complicações , Rim/patologia , Doenças Renais Policísticas/etiologia , Animais , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Hemodinâmica , Hiperglicemia/patologia , Hiperglicemia/fisiopatologia , Testes de Função Renal , Masculino , Camundongos Knockout , Doenças Renais Policísticas/patologia , Distribuição Aleatória , Proteínas Wnt/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 306(2): L162-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24213915

RESUMO

The mechanisms for the development of bronchiectasis and airway hyperreactivity have not been fully elucidated. Although genetic, acquired diseases and environmental influences may play a role, it is also possible that motile cilia can influence this disease process. We hypothesized that deletion of a key intraflagellar transport molecule, IFT88, in mature mice causes loss of cilia, resulting in airway remodeling. Airway cilia were deleted by knockout of IFT88, and airway remodeling and pulmonary function were evaluated. In IFT88(-) mice there was a substantial loss of airway cilia on respiratory epithelium. Three months after the deletion of cilia, there was clear evidence for bronchial remodeling that was not associated with inflammation or apparent defects in mucus clearance. There was evidence for airway epithelial cell hypertrophy and hyperplasia. IFT88(-) mice exhibited increased airway reactivity to a methacholine challenge and decreased ciliary beat frequency in the few remaining cells that possessed cilia. With deletion of respiratory cilia there was a marked increase in the number of club cells as seen by scanning electron microscopy. We suggest that airway remodeling may be exacerbated by the presence of club cells, since these cells are involved in airway repair. Club cells may be prevented from differentiating into respiratory epithelial cells because of a lack of IFT88 protein that is necessary to form a single nonmotile cilium. This monocilium is a prerequisite for these progenitor cells to transition into respiratory epithelial cells. In conclusion, motile cilia may play an important role in controlling airway structure and function.


Assuntos
Hiper-Reatividade Brônquica/patologia , Bronquiectasia/patologia , Cílios/patologia , Cílios/fisiologia , Transtornos da Motilidade Ciliar/patologia , Animais , Hiper-Reatividade Brônquica/fisiopatologia , Bronquiectasia/fisiopatologia , Broncoconstritores/farmacologia , Transtornos da Motilidade Ciliar/fisiopatologia , Modelos Animais de Doenças , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Knockout , Depuração Mucociliar/fisiologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Mucosa Respiratória/fisiopatologia , Proteínas Supressoras de Tumor/genética
4.
PLoS One ; 8(8): e73424, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977387

RESUMO

OBJECTIVE: Regulation of apical calcium entry is important for the function of principal cells of the collecting duct. However, the molecular identity and the regulators of the transporter/channel, which is responsible for apical calcium entry and what factors regulate the calcium conduction remain unclear. METHODS AND RESULTS: We report that endogenous TRPP2 and TRPV4 assemble to form a 23-pS divalent cation-permeable non-selective ion channel at the apical membrane of renal principal cells of the collecting duct. TRPP2\TRPV4 channel complex was identified by patch-clamp, immunofluorescence and co-immunprecipitation studies in both principal cells that either possess normal cilia (cilia (+)) or in which cilia are absent (cilia (-)). This channel has distinct biophysical and pharmacological and regulatory profiles compared to either TRPP2 or TRPV4 channels. The rate of occurrence detected by patch clamp was higher in cilia (-) compared to cilia (+) cells. In addition, shRNA knockdown of TRPP2 increased the prevalence of TRPV4 channel activity while knockdown of TRPV4 resulted in TRPP2 activity and knockdown of both proteins vastly decreased the 23-pS channel activity. Epidermal growth factor (EGF) stimulated TRPP2\TRPV4 channel through the EGF receptor (EGFR) tyrosine kinase-dependent signaling. With loss of cilia, apical EGF treatment resulted in 64-fold increase in channel activity in cilia (-) but not cilia (+) cells. In addition EGF increased cell proliferation in cilia (-) cell that was dependent upon TRPP2\TRPV4 channel mediated increase in intracellular calcium. CONCLUSION: We conclude that in the absence of cilia, an EGF activated TRPP2\TRPV4 channel may play an important role in increased cell proliferation and cystogenesis.


Assuntos
Agonistas dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Túbulos Renais Coletores/metabolismo , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cátions Bivalentes/metabolismo , Proliferação de Células/efeitos dos fármacos , Cílios/metabolismo , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imunofluorescência , Inativação Gênica/efeitos dos fármacos , Imunoprecipitação , Ativação do Canal Iônico/efeitos dos fármacos , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos
5.
Am J Physiol Renal Physiol ; 302(7): F801-8, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22205228

RESUMO

Polycystic kidney disease (PKD) is a ciliopathy characterized by renal cysts and hypertension. These changes are presumably due to altered fluid and electrolyte transport in the collecting duct (CD). This is the site where vasopressin (AVP) stimulates vasopressin-2 receptor (V2R)-mediated aquaporin-2 (AQP2) insertion into the apical membrane. Since cysts frequently occur in the CD, we studied V2R and AQP2 trafficking and function in CD cell lines with stunted and normal cilia [cilia (-), cilia (+)] derived from the orpk mouse (hypomorph of the Tg737/Ift88 gene). Interestingly, only cilia (-) cells grown on culture dishes formed domes after apical AVP treatment. This observation led to our hypothesis that V2R mislocalizes to the apical membrane in the absence of a full-length cilium. Immunofluorescence indicated that AQP2 localizes to cilia and in a subapical compartment in cilia (+) cells, but AQP2 levels were elevated in both apical and basolateral membranes in cilia (-) cells after apical AVP treatment. Western blot analysis revealed V2R and glycosylated AQP2 in biotinylated apical membranes of cilia (-) but not in cilia (+) cells. In addition, apical V2R was functional upon apical desmopressin (DDAVP) treatment by demonstrating increased cAMP, water transport, and benzamil-sensitive equivalent short-circuit current (I(sc)) in cilia (-) cells but not in cilia (+) cells. Moreover, pretreatment with a PKA inhibitor abolished DDAVP stimulation of I(sc) in cilia (-) cells. Thus we propose that structural or functional loss of cilia leads to abnormal trafficking of AQP2/V2R leading to enhanced salt and water absorption. Whether such apical localization contributes to enhanced fluid retention and hypertension in PKD remains to be determined.


Assuntos
Aquaporina 2/metabolismo , Cílios/patologia , Túbulos Renais Coletores/metabolismo , Doenças Renais Policísticas/metabolismo , Receptores de Vasopressinas/metabolismo , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Isoquinolinas , Túbulos Renais Coletores/patologia , Camundongos , Doenças Renais Policísticas/patologia , Sulfonamidas , Vasopressinas
6.
Am J Physiol Renal Physiol ; 301(1): F44-54, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21429969

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are Ca(2+)-permeable, ligand-gated, nonselective cation channels that function as neuronal synaptic receptors but which are also expressed in multiple peripheral tissues. Here, we show for the first time that NMDAR subunits NR3a and NR3b are highly expressed in the neonatal kidney and that there is continued expression of NR3a in the renal medulla and papilla of the adult mouse. NR3a was also expressed in mIMCD-3 cells, where it was found that hypoxia and hypertonicity upregulated NR3a expression. Using short-hairpin (sh) RNA-based knockdown, a stable inner medullary collecting duct (IMCD) cell line was established that had ∼80% decrease in NR3a. Knockdown cells exhibited an increased basal intracellular calcium concentration, reduced cell proliferation, and increased cell death. In addition, NR3a knockdown cells exhibited reduced water transport in response to the addition of vasopressin, suggesting an alteration in aquaporin-2 (AQP2) expression/function. Consistent with this notion, we demonstrate decreased surface expression of glycosylated AQP2 in IMCD cells transfected with NR3a shRNA. To determine whether this also occurred in vivo, we compared AQP2 levels in wild-type vs. in NR3a(-/-) mice. Total AQP2 protein levels in the outer and inner medulla were significantly reduced in knockout mice compared with control mice. Finally, NR3a(-/-) mice showed a significant delay in their ability to increase urine osmolality during water restriction. Thus NR3a may play a renoprotective role in collecting duct cells. Therefore, under conditions that are associated with high vasopressin levels, NR3a, by maintaining low intracellular calcium levels, protects the function of the principal cells to reabsorb water and thereby increase medullary osmolality.


Assuntos
Túbulos Renais Coletores/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Aquaporina 2/metabolismo , Western Blotting , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Células Cultivadas , Humanos , Soluções Hipertônicas , Imuno-Histoquímica , Capacidade de Concentração Renal/genética , Capacidade de Concentração Renal/fisiologia , Medula Renal/citologia , Medula Renal/metabolismo , Túbulos Renais Coletores/citologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/isolamento & purificação , Camundongos , Camundongos Knockout , Concentração Osmolar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Regulação para Cima/fisiologia
7.
Am J Physiol Renal Physiol ; 299(6): F1507-14, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20926633

RESUMO

Recently, the use of overexpression of telomerase reverse transcriptase (TERT) has led to the generation of immortalized human cell lines. However, this cell immortalization approach has not been reported in well-differentiated mouse cells, such as renal epithelial cells. We sought to establish and then characterize a mouse collecting duct cell line, using ectopic expression of mTERT. Isolated primary cortical collecting duct (CCD) cell lines were transduced with mouse (m)TERT, using a lentiviral vector. mTERT-negative cells did not survive blasticidin selection, whereas mTERT-immortalized cells proliferated in selection media for over 40 subpassages. mTERT messenger RNA and telomerase activity was elevated in these cells, compared with an SV40-immortalized cell line. Flow cytometry with Dolichos biflorus agglutinin was used to select the CCD principal cells, and we designated this cell line mTERT-CCD. Cells were well differentiated and exhibited morphological characteristics typically found in renal epithelial cells, such as tight junction formation, microvilli, and primary cilia. Further characterization using standard immunofluorescence revealed abundant expression of aquaporin-2 and the vasopressin type 2 receptor. mTERT-CCD cells exhibited cAMP-stimulated/benzamil-inhibited whole cell currents. Whole cell patch-clamp currents were also enhanced after a 6-day treatment with aldosterone. In conclusion, we have successfully used mTERT to immortalize mouse collecting duct cells that retain the basic in vivo phenotypic characteristics of collecting duct cells. This technique should be valuable in generating cell lines from genetically engineered mouse models.


Assuntos
Técnicas de Cultura de Células/métodos , Linhagem Celular , Túbulos Renais Coletores/citologia , Telomerase/genética , Animais , Túbulos Renais Coletores/metabolismo , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Am Soc Nephrol ; 19(10): 1940-6, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18562570

RESUMO

While studying the intracellular calcium dynamics in cells of the macula densa, the observation was made that tubular epithelial cells located near the macula densa and associated with the renal arterioles exhibit spontaneous Ca2+ oscillations. In this study, the cortical thick ascending limb-distal tubule, with attached glomerulus, was isolated and perfused. At a low luminal sodium chloride concentration, Ca2+ oscillations at a frequency of 63 mHz were observed in tubular cells that were within 100 microm of the macula densa plaque using four-dimensional multiphoton microscopy and wide-field fluorescence microscopy with fura-2. The Ca2+ oscillations were absent in the macula densa cells. Spontaneous oscillations in basolateral membrane potential suggested that Ca2+ oscillations occurred, at least in part, through depolarization-induced increases in Ca2+ entry. The amplitude of these Ca2+ oscillations was significantly enhanced by the activation of the Ca2+-sensing receptor. Increasing the luminal sodium chloride concentration or luminal flow resulted in a significant increase in both the amplitude of Ca2+ oscillations and the intracellular Ca2+ concentration in perimacular cortical thick ascending limb cells. In addition, luminal furosemide attenuated the [NaCl]L-dependent changes in intracellular Ca2+ concentration, but hydrochlorothiazide had no effect. These findings demonstrate that tubular epithelial cells at the perimeter of the macula densa exhibit spontaneous oscillations in intracellular Ca2+ concentration, enhanced by tubular flow and luminal sodium chloride. These oscillatory patterns may play a role in juxtaglomerular signaling.


Assuntos
Sinalização do Cálcio/fisiologia , Células Epiteliais/fisiologia , Sistema Justaglomerular/metabolismo , Sistema Justaglomerular/patologia , Túbulos Renais Distais/metabolismo , Alça do Néfron/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Técnicas de Cultura de Células , Sistema Justaglomerular/efeitos dos fármacos , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/patologia , Alça do Néfron/patologia , Potenciais da Membrana/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Microscopia de Fluorescência por Excitação Multifotônica , Coelhos
9.
Environ Health Perspect ; 114(1): 40-5, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16393656

RESUMO

Worldwide, wild fish living in rivers receiving municipal and industrial discharges may experience endocrine disruption as a result of exposure to anthropogenic pollutants. The purpose of this study was to evaluate the hormonal status of wild fish in a U.S. river receiving unbleached kraft and recycled pulp mill effluent (Pearl River at Bogalusa, LA). We evaluated two alternative hypotheses: the effluent contained constituents that suppressed male and female reproduction, or it contained an androgenic substance that masculinized females. To evaluate the likelihood of fish exposure to effluent, we marked 697 longear sunfish (Lepomis megalotis) over a 2-year period; 83% of recaptured fish were found at the site of initial capture, and only one fish migrated from an effluent-receiving site to a reference site. We can reasonably assume that fish captured from an effluent-receiving site are residents, not transitory migrants. To diagnose endocrine disruption, we measured sex steroid hormone [17beta-estradiol (E2), testosterone (T), and 11-ketotestosterone (11KT)] and vitellogenin (VTG) concentrations in male and female longear sunfish captured at two sites upstream and two sites downstream of the effluent outfall. Kraft pulp mill effluent did not affect male reproductive physiology but did suppress female T and VTG levels when effluent constituted>or=1% of river flow. Masculinization was not observed. Longear sunfish in the Pearl River experience moderate reproductive suppression in response to unbleached kraft and recycled pulp mill effluent.


Assuntos
Resíduos Industriais/efeitos adversos , Papel , Perciformes/sangue , Vitelogeninas/sangue , Animais , Estradiol/sangue , Feminino , Louisiana , Masculino , Reprodução/efeitos dos fármacos , Rios , Testosterona/análogos & derivados , Testosterona/sangue , Eliminação de Resíduos Líquidos
10.
Mol Ther ; 9(3): 347-54, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15006601

RESUMO

Interleukin-12 (IL-12) is one of the most effective cytokines for treating malignancy. Intratumoral delivery of the murine Il-12 gene, using electroporation, has been found effective in inducing regression of established tumors in mice, and more effective than intramuscular injection of this gene by electroporation, but what is not known is the molecular mechanism by which IL-12 exerts an antitumor effect. To define these candidate genes, the gene expression profiles of tumors treated with and without intratumoral Il-12 electroporation gene therapy were analyzed by cDNA array. Mig (Cxcl9), Stat1, and IRF7 are the three genes that are the most altered at the level of expression after administration of Il-12 via intratumoral electroporation, when subjected to further characterization by Northern blot, Western blot, and immunostaining. The results from Northern blot and immunostaining analyses indicate that intratumoral delivery of the murine Il-12 gene via electroporation induces accumulation of IRF7 in the nuclei of tumor cells and upregulates Mig and Stat1 expression by 15- and 5-fold, respectively, compared to intratumoral electroporation of control plasmid DNA. Intramuscular injection of the same Il-12 gene using electroporation upregulates Mig and Stat1 by only 6- and 2.9-fold, respectively, but does not induce any IRF7 accumulation in the nuclei. Further functional analyses of Mig indicate that expression in tumors can induce CD4+ but not CD8+ T cell infiltration. Further functional analysis of Stat1 indicates that a lack of Stat1 expression inhibits the Il-12-mediated induction of IP10, a known antiangiogenic gene. These data suggest that these three genes may positively correlate with the antitumor efficacy of intratumoral Il-12 electroporation gene therapy.


Assuntos
Eletroporação/métodos , Terapia Genética/métodos , Vetores Genéticos , Interleucina-12/genética , Animais , Northern Blotting , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL9 , Quimiocinas CXC , Citocinas/metabolismo , DNA/metabolismo , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular , Fator Regulador 7 de Interferon , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos/metabolismo , Fator de Transcrição STAT1 , Transativadores/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...