Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Front Cardiovasc Med ; 9: 959457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204585

RESUMO

Introduction: Vascular calcification (VC) is a major risk factor for cardiovascular morbidity and mortality. Depending on the location of mineral deposition within the arterial wall, VC is classified as intimal and medial calcification. Using in vitro mineralization assays, we developed protocols triggering both types of calcification in vascular smooth muscle cells (SMCs) following diverging molecular pathways. Materials and methods and results: Human coronary artery SMCs were cultured in osteogenic medium (OM) or high calcium phosphate medium (CaP) to induce a mineralized extracellular matrix. OM induces osteoblast-like differentiation of SMCs-a key process in intimal calcification during atherosclerotic plaque remodeling. CaP mimics hyperphosphatemia, associated with chronic kidney disease-a risk factor for medial calcification. Transcriptomic analysis revealed distinct gene expression profiles of OM and CaP-calcifying SMCs. OM and CaP-treated SMCs shared 107 differentially regulated genes related to SMC contraction and metabolism. Real-time extracellular efflux analysis demonstrated decreased mitochondrial respiration and glycolysis in CaP-treated SMCs compared to increased mitochondrial respiration without altered glycolysis in OM-treated SMCs. Subsequent kinome and in silico drug repurposing analysis (Connectivity Map) suggested a distinct role of protein kinase C (PKC). In vitro validation experiments demonstrated that the PKC activators prostratin and ingenol reduced calcification triggered by OM and promoted calcification triggered by CaP. Conclusion: Our direct comparison results of two in vitro calcification models strengthen previous observations of distinct intracellular mechanisms that trigger OM and CaP-induced SMC calcification in vitro. We found a differential role of PKC in OM and CaP-calcified SMCs providing new potential cellular and molecular targets for pharmacological intervention in VC. Our data suggest that the field should limit the generalization of results found in in vitro studies using different calcification protocols.

3.
ESC Heart Fail ; 7(6): 4159-4171, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33034410

RESUMO

AIMS: Diastolic dysfunction is common in cardiovascular diseases, particularly in the case of heart failure with preserved ejection fraction. The challenge is to develop adequate animal models to envision human therapies in the future. It has been hypothesized that this diastolic dysfunction is linked to alterations in the nitric oxide (• NO) pathway. To investigate this issue further, we investigated the cardiac functions of a transgenic rat model (Tgß3 ) that overexpresses the human ß3 -adrenoceptor (hß3 -AR) in the endothelium with the underlying rationale that the • NO pathway should be stimulated in the endothelium. METHODS AND RESULTS: Transgenic rats (Tgß3 ) that express hß3 -AR under the control of intercellular adhesion molecule 2 promoter were developed for a specific expression in endothelial cells. Transcriptomic analyses were performed on left ventricular tissue from 45-week-old rats. Among all altered genes, we focus on • NO synthase expression and endothelial function with arterial reactivity and evaluation of • NO and O2 •- production. Cardiac function was characterized by echocardiography, invasive haemodynamic studies, and working heart studies. Transcriptome analyses illustrate that several key genes are regulated by the hß3 -AR overexpression. Overexpression of hß3 -AR leads to a reduction of Nos3 mRNA expression (-72%; P < 0.05) associated with a decrease in protein expression (-19%; P < 0.05). Concentration-dependent vasodilation to isoproterenol was significantly reduced in Tgß3 aorta (-10%; P < 0.05), while • NO and O2 •- production was increased. In the same time, Tgß3 rats display progressively increasing diastolic dysfunction with age, as shown by an increase in the E/A filing ratio [1.15 ± 0.01 (wild type, WT) vs. 1.33 ± 0.04 (Tgß3 ); P < 0.05] and in left ventricular end-diastolic pressure [5.57 ± 1.23 mmHg (WT) vs. 11.68 ± 1.11 mmHg (Tgß3 ); P < 0.05]. In isolated working hearts, diastolic stress using increasing preload levels led to a 20% decrease in aortic flow [55.4 ± 1.9 mL/min (WT) vs. 45.8 ± 2.5 mL/min (Tgß3 ); P < 0.05]. CONCLUSIONS: The Tgß3 rat model displays the expected increase in • NO production upon ageing and develops diastolic dysfunction. These findings provide a further link between endothelial and cardiac dysfunction. This rat model should be valuable for future preclinical evaluation of candidate drugs aimed at correcting diastolic dysfunction.

4.
Biophys Rev ; 12(4): 817-826, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32666467

RESUMO

Atrial fibrillation is the most common sustained cardiac arrhythmia in humans, and its prevalence continues to increase because of the aging of the world population. Much still needs to be learned about the molecular pathways involved in the development and the persistence of the disease. Analysis of the transcriptome of cardiac tissue has provided valuable insight into diverse aspects of atrial remodeling, in particular concerning electrical remodeling-related to ion channels-and structural remodeling identified by dysregulation of processes linked to inflammation, fibrosis, oxidative stress, and thrombogenesis. The huge amount of data produced by these studies now represents a valuable source for the identification of novel potential therapeutic targets. In addition, the shift from cardiac tissue to peripheral blood as a substrate for transcriptome analysis revealed this strategy as a promising tool for improved diagnosis and therefore better patient care.

5.
Pharmacol Res ; 159: 104922, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32464326

RESUMO

Down-regulation of Connexin43 (Cx43) has often been associated with the development of cardiac fibrosis. We showed previously that Scn5a heterozygous knockout mice (Scn5a+/-), which mimic familial progressive cardiac conduction defect, exhibit an age-dependent decrease of Cx43 expression and phosphorylation concomitantly with activation of TGF-ß pathway and fibrosis development in the myocardium between 45 and 60 weeks of age. The aim of this study was to investigate whether Gap-134 prevents Cx43 down-regulation with age and fibrosis development in Scn5a+/- mice. We observed in 60-week-old Scn5a+/- mouse heart a Cx43 expression and localization remodeling correlated with fibrosis. Chronic administration of a potent and selective gap junction modifier, Gap-134 (danegaptide), between 45 and 60 weeks, increased Cx43 expression and phosphorylation on serine 368 and prevented Cx43 delocalization. Furthermore, we found that Gap-134 prevented fibrosis despite the persistence of the conduction defects and the TGF-ß canonical pathway activation. In conclusion, the present study demonstrates that the age-dependent decrease of Cx43 expression is involved in the ventricular fibrotic process occurring in Scn5a+/- mice. Finally, our study suggests that gap junction modifier, such as Gap-134, could be an effective anti-fibrotic agent in the context of age-dependent fibrosis in progressive cardiac conduction disease.


Assuntos
Benzamidas/farmacologia , Cardiomiopatias/prevenção & controle , Conexina 43/metabolismo , Fibroblastos/efeitos dos fármacos , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/deficiência , Prolina/análogos & derivados , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Camundongos da Linhagem 129 , Camundongos Knockout , Miocárdio/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fosforilação , Prolina/farmacologia , Pirazóis/farmacologia , Transdução de Sinais , Regulação para Cima , Remodelação Ventricular/efeitos dos fármacos
6.
Stem Cells ; 36(10): 1589-1602, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29873146

RESUMO

Epicardial adipose tissues (EATs) and vascular tissues may both belong to the mesoepithelial lineage that develops from epicardium-derived progenitor cells (EPDCs) in developing and injured hearts. Very little is known of the molecular mechanisms of EPDC contribution in EAT development and neovascularization in adult heart, which the topic remains a subject of intense therapeutic interest and scientific debate. Here we studied the epigenetic control of stemness and anti-adipogenic and pro-vasculogenic fate of human EPDCs (hEPDCs), through investigating an angiogenic hormone, prokineticin-2 (PK2) signaling via its receptor PKR1. We found that hEPDCs spontaneously undergoes epithelial-to-mesenchymal transformation (EMT), and are not predestined for the vascular lineages. However, PK2 via a histone demethylase KDM6A inhibits EMT, and induces asymmetric division, leading to self-renewal and formation of vascular and epithelial/endothelial precursors with angiogenic potential capable of differentiating into vascular smooth muscle and endothelial cells. PK2 upregulates and activates KDM6A to inhibit repressive histone H3K27me3 marks on promoters of vascular genes (Flk-1 and SM22α) involved in vascular lineage commitment and maturation. In PK2-mediated anti-adipogenic signaling, KDM6A stabilizes and increases cytoplasmic ß-catenin levels to repress peroxisome proliferator-activated receptor-γ expression and activity. Our findings offer additional molecular targets to manipulate hEPDCs-involved tissue repair/regeneration in cardiometabolic and ischemic heart diseases. Stem Cells 2018;36:1589-1602.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Hormônios Gastrointestinais/metabolismo , Neuropeptídeos/metabolismo , Pericárdio/citologia , Pericárdio/metabolismo , Diferenciação Celular/fisiologia , Epigênese Genética , Transição Epitelial-Mesenquimal , Hormônios Gastrointestinais/genética , Histona Desmetilases/metabolismo , Humanos , Neuropeptídeos/genética , Proteínas Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo
7.
Oncotarget ; 9(22): 15883-15894, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29662614

RESUMO

The PGC-1 (Peroxisome proliferator-activated receptor Gamma Coactivator-1) family of coactivators (PGC-1α, PGC-1ß, and PRC) plays a central role in the transcriptional control of mitochondrial biogenesis and oxidative phosphorylation (OXPHOS) processes. These coactivators integrate mitochondrial energy production into cell metabolism using complementary pathways. The XTC.UC1 cell line is a mitochondria-rich model of thyroid tumors whose biogenesis is almost exclusively dependent on PRC. Here we aim to propose an integrative view of the cellular pathways regulated by PRC through integration of cDNA and miRNA microarray data and chromatin immunoprecipitation results obtained from XTC.UC1 cells invalidated for PRC. This study showes that PRC induces a complex network of cellular functions interacting with at least one to five of the studied transcription factors (Estrogen Related Receptor alpha, ERR1; Nuclear-Respiratory Factors, NRF1 and NRF2; cAMP Response Element Binding, CREB; and Ying Yang, YY1). Our data confirm that ERR1 is a key partner of PRC in the regulation of mitochondrial functions and suggest a potential role of this complex in RNA processing. PRC is also involved in transcriptional regulatory complexes targeting 12 miRNAs, five of which are involved in the control of the OXPHOS process. Our findings demonstrate that the PRC coactivator can act in complex with several transcription factors and regulate miRNA expression to control the fine regulation of main metabolic functions in the cell. Therefore, in PGC-1α/ß-associated pathologies, PRC, as a metabolic sensor, may ensure mitochondrial homeostasis.

8.
Sci Rep ; 8(1): 3940, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500419

RESUMO

Calcification is independently associated with cardiovascular events and morbidity. The calcification burden in atherosclerotic lesions quantitatively and qualitatively differs between arterial beds. Cardiovascular risk factors (CVRF) differentially affect plaque development between arterial beds. The aim of this study was to evaluate the impact of CVRF on atherosclerotic plaque calcification and to further study the molecular arterial heterogeneity that could account for these differences. Histological analysis was performed on atherosclerotic plaques from 153 carotid, 97 femoral and 28 infrapopliteal arteries. CVRF showed minor associations with plaque calcification: age and hypertension affected only the overall presence of calcification but not the type of the calcification, which significantly differed between arterial beds. Transcriptome analysis revealed distinct gene expression profiles associated with each territory in atherosclerotic and healthy arteries. Canonical pathway analysis showed the preferential involvement of immune system-related processes in both atherosclerotic and healthy carotid arteries. Bone development-related genes were among those mostly enriched in atherosclerotic and healthy femoral arteries, which are more prone to developing endochondral calcification. This study highlights the heterogeneous nature of arteries from different peripheral vascular beds and contributes to a better understanding of atherosclerosis formation and evolution.


Assuntos
Artérias/metabolismo , Aterosclerose/genética , Genoma Humano , Idoso , Aterosclerose/patologia , Calcinose , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/patologia , Fatores de Risco
9.
PLoS One ; 13(1): e0191976, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29373585

RESUMO

Vascular calcification is a strong and independent predictive factor for cardiovascular complications and mortality. Our previous work identified important discrepancies in plaque composition and calcification types between carotid and femoral arteries. The objective of this study is to further characterize and understand the heterogeneity in vascular calcification among vascular beds, and to identify molecular mechanisms underlying this process. We established ECLAGEN biocollection that encompasses human atherosclerotic lesions and healthy arteries from different locations (abdominal, thoracic aorta, carotid, femoral, and infrapopliteal arteries) for histological, cell isolation, and transcriptomic analysis. Our results show that lesion composition differs between these locations. Femoral arteries are the most calcified arteries overall. They develop denser calcifications (sheet-like, nodule), and are highly susceptible to osteoid metaplasia. These discrepancies may derive from intrinsic differences between SMCs originating from these locations, as microarray analysis showed specific transcriptomic profiles between primary SMCs isolated from each arterial bed. These molecular differences translated into functional disparities. SMC from femoral arteries showed the highest propensity to mineralize due to an increase in basal TGFß signaling. Our results suggest that biological heterogeneity of resident vascular cells between arterial beds, reflected by our transcriptomic analysis, is critical in understanding plaque biology and calcification, and may have strong implications in vascular therapeutic approaches.


Assuntos
Artérias/patologia , Calcinose/patologia , Músculo Liso Vascular/patologia , Diferenciação Celular , Células Cultivadas , Humanos , Placa Aterosclerótica/patologia , Transcriptoma
10.
Sci Rep ; 7(1): 12804, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038558

RESUMO

Cardiac fat tissue volume and vascular dysfunction are strongly associated, accounting for overall body mass. Despite its pathophysiological significance, the origin and autocrine/paracrine pathways that regulate cardiac fat tissue and vascular network formation are unclear. We hypothesize that adipocytes and vasculogenic cells in adult mice hearts may share a common cardiac cells that could transform into adipocytes or vascular lineages, depending on the paracrine and autocrine stimuli. In this study utilizing transgenic mice overexpressing prokineticin receptor (PKR1) in cardiomyocytes, and tcf21ERT-creTM-derived cardiac fibroblast progenitor (CFP)-specific PKR1 knockout mice (PKR1 tcf-/-), as well as FACS-isolated CFPs, we showed that adipogenesis and vasculogenesis share a common CFPs originating from the tcf21+ epithelial lineage. We found that prokineticin-2 is a cardiomyocyte secretome that controls CFP transformation into adipocytes and vasculogenic cells in vivo and in vitro. Upon HFD exposure, PKR1 tcf-/- mice displayed excessive fat deposition in the atrioventricular groove, perivascular area, and pericardium, which was accompanied by an impaired vascular network and cardiac dysfunction. This study contributes to the cardio-obesity field by demonstrating that PKR1 via autocrine/paracrine pathways controls CFP-vasculogenic- and CFP-adipocyte-transformation in adult heart. Our study may open up new possibilities for the treatment of metabolic cardiac diseases and atherosclerosis.


Assuntos
Adipócitos/citologia , Comunicação Autócrina , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Sanguíneas/citologia , Transdiferenciação Celular , Fibroblastos/citologia , Comunicação Parácrina , Receptores Acoplados a Proteínas G/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Células Sanguíneas/metabolismo , Linhagem da Célula , Dieta Hiperlipídica , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , PPAR gama/genética , PPAR gama/metabolismo , Pericárdio/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
11.
Biophys Rev ; 9(2): 131-137, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28510085

RESUMO

The world population continues to grow older rapidly, mostly because of declining fertility and increasing longevity. Since age represents the largest risk factor for cardiovascular disease, the prevalence of these pathologies increases dramatically with increasing age. In order to improve patient care and prevention for age-related cardiac diseases, insight should be gained from the analysis of processes involved in and leading to cardiac aging. It is from this perspective that we provide here an overview of changes associated with age in the heart on four levels: functional, structural, cellular and molecular. We highlight those changes that are in common with the development of the two major age-associated cardiac pathologies: heart failure and atrial fibrillation. These commonly affected processes in aging and cardiac pathophysiology may provide an explanation for the age risk factor in cardiac disease.

12.
PLoS One ; 9(3): e93255, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24681627

RESUMO

INTRODUCTION: Phosphatidylinositol-4,5-bisphosphate (PIP2) is a cofactor necessary for the activity of KCNQ1 channels. Some Long QT mutations of KCNQ1, including R243H, R539W and R555C have been shown to decrease KCNQ1 interaction with PIP2. A previous study suggested that R539W is paradoxically less sensitive to intracellular magnesium inhibition than the WT channel, despite a decreased interaction with PIP2. In the present study, we confirm this peculiar behavior of R539W and suggest a molecular mechanism underlying it. METHODS AND RESULTS: COS-7 cells were transfected with WT or mutated KCNE1-KCNQ1 channel, and patch-clamp recordings were performed in giant-patch, permeabilized-patch or ruptured-patch configuration. Similar to other channels with a decreased PIP2 affinity, we observed that the R243H and R555C mutations lead to an accelerated current rundown when membrane PIP2 levels are decreasing. As opposed to R243H and R555C mutants, R539W is not more but rather less sensitive to PIP2 decrease than the WT channel. A molecular model of a fragment of the KCNQ1 C-terminus and the membrane bilayer suggested that a potential novel interaction of R539W with cholesterol stabilizes the channel opening and hence prevents rundown upon PIP2 depletion. We then carried out the same rundown experiments under cholesterol depletion and observed an accelerated R539W rundown that is consistent with this model. CONCLUSIONS: We show for the first time that a mutation may shift the channel interaction with PIP2 to a preference for cholesterol. This de novo interaction wanes the sensitivity to PIP2 variations, showing that a mutated channel with a decreased affinity to PIP2 could paradoxically present a slowed current rundown compared to the WT channel. This suggests that caution is required when using measurements of current rundown as an indicator to compare WT and mutant channel PIP2 sensitivity.


Assuntos
Colesterol/metabolismo , Canal de Potássio KCNQ1/metabolismo , Síndrome do QT Longo/genética , Mutação/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Síndrome de Brugada , Células COS , Doença do Sistema de Condução Cardíaco , Linhagem Celular , Chlorocebus aethiops , Colesterol/genética , Sistema de Condução Cardíaco/anormalidades , Sistema de Condução Cardíaco/metabolismo , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/metabolismo , Magnésio/metabolismo , Fosfatidilinositol 4,5-Difosfato/genética
13.
PLoS One ; 6(11): e26952, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22096509

RESUMO

Duchenne Muscular Dystrophy (DMD) is a complex process involving multiple pathways downstream of the primary genetic insult leading to fatal muscle degeneration. Aging muscle is a multifactorial neuromuscular process characterized by impaired muscle regeneration leading to progressive atrophy. We hypothesized that these chronic atrophying situations may share specific myogenic adaptative responses at transcriptional level according to tissue remodeling. Muscle biopsies from four young DMD and four AGED subjects were referred to a group of seven muscle biopsies from young subjects without any neuromuscular disorder and explored through a dedicated expression microarray. We identified 528 differentially expressed genes (out of 2,745 analyzed), of which 328 could be validated by an exhaustive meta-analysis of public microarray datasets referring to DMD and Aging in skeletal muscle. Among the 328 validated co-expressed genes, 50% had the same expression profile in both groups and corresponded to immune/fibrosis responses and mitochondrial metabolism. Generalizing these observed meta-signatures with large compendia of public datasets reinforced our results as they could be also identified in other pathological processes and in diverse physiological conditions. Focusing on the common gene signatures in these two atrophying conditions, we observed enrichment in motifs for candidate transcription factors that may coordinate either the immune/fibrosis responses (ETS1, IRF1, NF1) or the mitochondrial metabolism (ESRRA). Deregulation in their expression could be responsible, at least in part, for the same transcriptome changes initiating the chronic muscle atrophy. This study suggests that distinct pathophysiological processes may share common gene responses and pathways related to specific transcription factors.


Assuntos
Imunidade Adaptativa/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/metabolismo , Imunidade Adaptativa/genética , Adolescente , Envelhecimento/genética , Criança , Análise por Conglomerados , Humanos , Técnicas In Vitro , Fator Regulador 1 de Interferon/genética , Masculino , Distrofia Muscular de Duchenne/genética , Neurofibromina 1/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Proto-Oncogênica c-ets-1/genética , Receptores de Estrogênio/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor ERRalfa Relacionado ao Estrogênio
14.
BMC Genomics ; 12: 113, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21324190

RESUMO

BACKGROUND: DNA microarray technology has had a great impact on muscle research and microarray gene expression data has been widely used to identify gene signatures characteristic of the studied conditions. With the rapid accumulation of muscle microarray data, it is of great interest to understand how to compare and combine data across multiple studies. Meta-analysis of transcriptome data is a valuable method to achieve it. It enables to highlight conserved gene signatures between multiple independent studies. However, using it is made difficult by the diversity of the available data: different microarray platforms, different gene nomenclature, different species studied, etc. DESCRIPTION: We have developed a system tool dedicated to muscle transcriptome data. This system comprises a collection of microarray data as well as a query tool. This latter allows the user to extract similar clusters of co-expressed genes from the database, using an input gene list. Common and relevant gene signatures can thus be searched more easily. The dedicated database consists in a large compendium of public data (more than 500 data sets) related to muscle (skeletal and heart). These studies included seven different animal species from invertebrates (Drosophila melanogaster, Caenorhabditis elegans) and vertebrates (Homo sapiens, Mus musculus, Rattus norvegicus, Canis familiaris, Gallus gallus). After a renormalization step, clusters of co-expressed genes were identified in each dataset. The lists of co-expressed genes were annotated using a unified re-annotation procedure. These gene lists were compared to find significant overlaps between studies. CONCLUSIONS: Applied to this large compendium of data sets, meta-analyses demonstrated that conserved patterns between species could be identified. Focusing on a specific pathology (Duchenne Muscular Dystrophy) we validated results across independent studies and revealed robust biomarkers and new pathways of interest. The meta-analyses performed with MADMuscle show the usefulness of this approach. Our method can be applied to all public transcriptome data.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Músculos/metabolismo , Animais , Análise por Conglomerados , Genômica , Humanos , Anotação de Sequência Molecular , Distrofia Muscular de Duchenne/genética , Análise de Sequência com Séries de Oligonucleotídeos , Software
15.
Bioinformatics ; 27(5): 725-6, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21216776

RESUMO

UNLABELLED: MADGene is a software environment comprising a web-based database and a java application. This platform aims at unifying gene identifiers (ids) and performing gene set analysis. MADGene allows the user to perform inter-conversion of clone and gene ids over a large range of nomenclatures relative to 17 species. We propose a set of 23 functions to facilitate the analysis of gene sets and we give two microarray applications to show how MADGene can be used to conduct meta-analyses. AVAILABILITY: The MADGene resources are freely available online from http://www.madtools.org, a website dedicated to the analysis and annotation of DNA microarray data.


Assuntos
Biologia Computacional/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Análise por Conglomerados , Bases de Dados Genéticas , Internet , Metanálise como Assunto , Interface Usuário-Computador
16.
Endocrinology ; 151(9): 4467-76, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20591974

RESUMO

Excess mineralocorticoid signaling is deleterious for cardiovascular functions, as demonstrated by the beneficial effects of mineralocorticoid receptor (MR) antagonism on morbidity and mortality in patients with heart failure. However, the understanding of signaling pathways after MR activation in the heart remains limited. We performed transcriptomic analyses in the heart of double-transgenic mice with conditional, cardiomyocyte-specific, overexpression of the MR (MRcardio mice) or the glucocorticoid receptor (GR; GRcardio mice). Some of the genes induced in MRcardio mice were selected for comparative evaluation (real time PCR) in vivo in the heart of mice and ex vivo in the MR-expressing cardiomyocyte H9C2 cell line after aldosterone or corticosterone treatment. We demonstrate that chronic MR overexpression in the heart results in a limited number of induced (n = 24) and repressed (n = 22) genes compared with their control littermates. These genes are specifically modulated by MR because there is limited overlap (three induced, four repressed) with the genes that are regulated in the heart of GRcardio mice (compared with control mice: 70 induced, 73 repressed). Interestingly, some MR-induced genes that are up-regulated in vivo in mice are also induced by 24-h aldosterone treatment in H9C2 cells, such as plasminogen activator inhibitor 1 and Serpina-3 (alpha1-antichymotrypsin). The signaling pathways that are affected by long-term activation of MR may be of particular interest to design novel therapeutic targets in cardiac diseases.


Assuntos
Perfilação da Expressão Gênica , Miócitos Cardíacos/metabolismo , Receptores de Mineralocorticoides/fisiologia , Transdução de Sinais/fisiologia , Aldosterona/farmacologia , Animais , Western Blotting , Linhagem Celular , Corticosterona/farmacologia , Doxiciclina/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Ratos , Receptores de Mineralocorticoides/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serpinas/genética , Serpinas/metabolismo , Transdução de Sinais/genética
17.
J Cell Mol Med ; 14(6B): 1443-52, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19793385

RESUMO

Risk stratification in advanced heart failure (HF) is crucial for the individualization of therapeutic strategy, in particular for heart transplantation and ventricular assist device implantation. We tested the hypothesis that cardiac gene expression profiling can distinguish between HF patients with different disease severity. We obtained tissue samples from both left (LV) and right (RV) ventricle of explanted hearts of 44 patients undergoing cardiac transplantation or ventricular assist device placement. Gene expression profiles were obtained using an in-house microarray containing 4217 muscular organ-relevant genes. Based on their clinical status, patients were classified into three HF-severity groups: deteriorating (n= 12), intermediate (n= 19) and stable (n= 13). Two-class statistical analysis of gene expression profiles of deteriorating and stable patients identified a 170-gene and a 129-gene predictor for LV and RV samples, respectively. The LV molecular predictor identified patients with stable and deteriorating status with a sensitivity of 88% and 92%, and a specificity of 100% and 96%, respectively. The RV molecular predictor identified patients with stable and deteriorating status with a sensitivity of 100% and 96%, and a specificity of 100% and 100%, respectively. The molecular prediction was reproducible across biological replicates in LV and RV samples. Gene expression profiling has the potential to reproducibly detect HF patients with highest HF severity with high sensitivity and specificity. In addition, not only LV but also RV samples could be used for molecular risk stratification with similar predictive power.


Assuntos
Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Viés , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Medição de Risco
18.
FASEB J ; 21(11): 2980-93, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17442730

RESUMO

Prokineticins are potent angiogenic factors that bind to two G protein-coupled receptors to initiate their biological effects. We hypothesize that prokineticin receptor-1 (PKR1/GPR73) signaling may contribute to cardiomyocyte survival or repair in myocardial infarction. Since we showed that prokineticin-2 and PKR1 are expressed in adult mouse heart and cardiac cells, we investigated the role of prokineticin-2 on capillary endothelial cell and cardiomyocyte function. In cultured cardiac endothelial cells, prokineticin-2 or overexpression of PKR1 induces vessel-like formation without increasing VEGF levels. In cardiomyocytes and H9c2 cells, prokineticin-2 or overexpressing PKR1 activates Akt to protect cardiomyocytes against oxidative stress. The survival and angiogenesis promoting effects of prokineticin-2 in cardiac cells were completely reversed by siRNA-PKR1, indicating PKR1 involvement. We thus, further investigated whether intramyocardial gene transfer of DNA encoding PKR1 may rescue the myocardium against myocardial infarction in mouse model. Transient PKR1 gene transfer after coronary ligation reduces mortality and preserves left ventricular function by promoting neovascularization and protecting cardiomyocytes without altering VEGF levels. In human end-stage failing heart samples, reduced PKR1 and prokineticin-2 transcripts and protein levels implicate a more important role for prokineticin-2/PKR1 signaling in heart. Our results suggest that PKR1 may represent a novel therapeutic target to limit myocardial injury following ischemic events.


Assuntos
Coração/fisiologia , Isquemia Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Neovascularização Patológica , Receptores Acoplados a Proteínas G/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adenoviridae/genética , Animais , Apoptose , Hipóxia Celular , Células Cultivadas , Embrião de Mamíferos , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Terapia Genética , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sondas RNA , RNA Interferente Pequeno/farmacologia , Ratos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo
19.
J Mol Cell Cardiol ; 40(1): 173-84, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16242148

RESUMO

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans. The pathophysiology of AF involves electrical, structural and contractile remodeling, which is associated with changes in cardiac gene expression. Previous studies of gene-expression changes in clinical AF have mostly been limited to a small number of candidate genes and have not all been well controlled for underlying heart disease. The present study assessed AF-related gene-expression changes in valve-disease patients with microarrays representing the cardiac transcriptome. Right atrial appendages from 11 patients with chronic AF and underlying valvular heart disease (AF-VHD) and seven patients in sinus rhythm with VHD (SR-VHD) were individually compared to an age-matched sinus-rhythm control group (SR-CTRL, 11 patients) using cardiac-specific microarray analysis. One-class statistical analysis was used to identify genes differentially expressed between SR-VHD and SR-CTRL patients. Two-class statistical analysis was used to identify genes differentially expressed between AF-VHD and SR-VHD patients. Out of 3863 analyzed genes, 832 genes were differentially expressed between SR-VHD and SR-CTRL patients, and 169 genes were differentially expressed between AF-VHD and SR-VHD patients. Striking AF-related changes included altered expression of nine genes pointing towards the development of fibrosis (e.g. upregulation of transforming growth factor beta1), and changes in eight genes potentially related to an increased risk of thromboembolic events (e.g. upregulation of alpha2 macroglobulin). Microarray results were confirmed by quantitative PCR. Our results suggest that AF produces a characteristic profile of gene-expression changes that may be related to the pathophysiology of the arrhythmia.


Assuntos
Fibrilação Atrial/genética , Doenças das Valvas Cardíacas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Idoso , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Reação em Cadeia da Polimerase , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1 , alfa-Macroglobulinas/genética
20.
Clin Chem Lab Med ; 43(7): 696-701, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16207127

RESUMO

Gene expression profiling studies in human diseases have allowed better understanding of pathophysiological processes. In addition, they may lead to the development of new clinical tools to improve diagnosis and prognosis of patients. Most of these studies have been successfully performed for human cancers. Inspired by these results, researchers in the cardiovascular field have also started using large-scale transcriptional analysis to better understand and classify human cardiovascular disease. Here we provide an overview of the literature revealing new cardiac disease markers and encouraging results for further development of the expression profiling strategy for future clinical applications in cardiology.


Assuntos
Doenças Cardiovasculares/genética , Sinalização do Cálcio/genética , Doenças Cardiovasculares/metabolismo , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Marcadores Genéticos , Cardiopatias Congênitas/genética , Insuficiência Cardíaca/genética , Coração Auxiliar , Humanos , Modelos Genéticos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...