Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3856, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890169

RESUMO

Active faults accommodate tectonic plate motion through different slip modes, some stable and aseismic, others characterized by the occurrence of large earthquakes after long periods of inactivity. Although the slip mode estimation is of primary importance to improve seismic hazard assessment, this parameter inferred today from geodetic observations needs to be better constrained over many seismic cycles. From an analytical formulation developed for analyzing fault scarp formation and degradation in loosely consolidated material, we show that the final topographic shape generated by one earthquake rupture or by creep (i.e., continuous slip) deviates by as much as 10-20%, despite a similar cumulated slip and a constant diffusion coefficient. This result opens up the theoretical possibility of inverting, not only the cumulated slip or averaged slip rate, but also the number of earthquakes and their sizes from scarp morphologies. This approach is all the more relevant as the number of rupture events is limited. Estimating the fault slip history beyond a dozen earthquakes becomes very difficult as the effect of erosion on scarp morphology prevails. Our modeling also highlights the importance of trade-offs between fault slip history and diffusive processes. An identical topographic profile can be obtained either with a stable fault creep associated with rapid erosion, or a single earthquake rupture followed by slow erosion. These inferences, derived from the simplest possible diffusion model, are likely to be even more pronounced in nature.

2.
Sci Rep ; 10(1): 10899, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616811

RESUMO

Tectonics and climate-driven surface processes govern the evolution of Earth's surface topography. Topographic change in turn influences lithospheric deformation, but the elementary scale at which this feedback can be effective is unclear. Here we show that it operates in a single weather-driven erosion event. In 2009, typhoon Morakot delivered ~ 3 m of precipitation in southern Taiwan, causing exceptional landsliding and erosion. This event was followed by a step increase in the shallow (< 15 km depth) earthquake frequency lasting at least 2.5 years. Also, the scaling of earthquake magnitude and frequency underwent a sudden increase in the area where mass wasting was most intense. These observations suggest that the progressive removal of landslide debris by rivers from southern Taiwan has acted to increase the crustal stress rate to the extent that earthquake activity was demonstrably affected. Our study offers the first evidence of the impact of a single weather-driven erosion event on tectonics.

3.
Nat Commun ; 9(1): 3384, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139937

RESUMO

Recent acceleration of sand extraction for anthropic use threatens the sustainability of this major resource. However, continental erosion and river transport, which produce sand and sediment in general, lack quantification at the global scale. Here, we develop a new geodetic method to infer the sediment discharge to ocean of the world's largest rivers. It combines the spatial distribution of modern sedimentation zones with new high-resolution (~170 km) data from the Gravity Recovery and Climate Experiment (GRACE) mission launched in 2002. We obtain sediment discharges consistent with in situ measurements for the Amazon, Ganges-Brahmaputra, Changjiang, Indus, and Magdalena rivers. This new approach enables to quantitatively monitor the contemporary erosion of continental basins drained by rivers with large sediment discharges and paves the way toward a better understanding of how natural and anthropic changes influence landscape dynamics.


Assuntos
Sedimentos Geológicos/química , Gravitação , Oceanos e Mares , Rios/química , Comunicações Via Satélite , Geografia , Reprodutibilidade dos Testes
4.
Sci Rep ; 7(1): 11947, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947821

RESUMO

Climate change is considered as one of the main factors controlling sediment fluxes in mountain belts. However, the effect of El Niño, which represents the primary cause of inter-annual climate variability in the South Pacific, on river erosion and sediment transport in the Western Andes remains unclear. Using an unpublished dataset of Suspended Sediment Yield (SSY) in Peru (1968-2012), we show that the annual SSY increases by 3-60 times during Extreme El Niño Events (EENE) compared to normal years. During EENE, 82% to 97% of the annual SSY occurs from January to April. We explain this effect by a sharp increase in river water discharge due to high precipitation rates and transport capacity during EENE. Indeed, sediments accumulate in the mountain and piedmont areas during dry normal years, and are then rapidly mobilized during EENE years. The effect of EENE on SSY depends on the topography, as it is maximum for catchments located in the North of Peru (3-7°S), exhibiting a concave up hypsometric curve, and minimum for catchments in the South (7-18°S), with a concave down hypsometric curve. These findings highlight how the sediment transport of different topographies can respond in very different ways to large climate variability.

5.
Nat Commun ; 5: 5564, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25412707

RESUMO

Assessing seismic hazards remains one of the most challenging scientific issues in Earth sciences. Deep tectonic processes are classically considered as the only persistent mechanism driving the stress loading of active faults over a seismic cycle. Here we show via a mechanical model that erosion also significantly influences the stress loading of thrust faults at the timescale of a seismic cycle. Indeed, erosion rates of about ~0.1-20 mm yr(-1), as documented in Taiwan and in other active compressional orogens, can raise the Coulomb stress by ~0.1-10 bar on the nearby thrust faults over the inter-seismic phase. Mass transfers induced by surface processes in general, during continuous or short-lived and intense events, represent a prominent mechanism for inter-seismic stress loading of faults near the surface. Such stresses are probably sufficient to trigger shallow seismicity or promote the rupture of deep continental earthquakes up to the surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...