Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37836065

RESUMO

Two classes of thermal protection systems composed of a carbon-fibre-reinforced (CFRP) layer and an ablative material layer joined with a thermo-resistant ceramic adhesive were developed. The two classes differ in the composition of the ablative material reinforcing compound. In the first class, the ablative material is based on micronic-sized cork granules, and in the second class, the ablative material is reinforced with carbonic felt. For both classes of thermal protection systems, the reinforcement material was impregnated in simple phenolic resin, and nanometric additive, consisting of silicon carbide nanoparticles added in two different weight contents (1 and 2% by weight) relative to the resin. The thermal conductivity for the ablative materials in the thermal protection systems structure was determined. A test facility using oxy-butane flame was developed through which the thermal protection systems developed were tested at extreme temperatures, to simulate some thermal conditions in space applications. The materials were characterised from a morphostructural point of view using optical and scanning electron microscopy after thermal testing. The TPS composed of the carbon-felt-based ablative layer showed improved behaviour compared to the cork-based ablative ones in terms of the temperature increase rate during thermal conductivity testing, mass loss, as well as morphostructural appearance and material erosion after oxy-butane testing. The nSiC-based samples in both sets of TPSs showed improved behaviour compared to the un-filled ones, considering the temperature increase, mass loss, and morphostructure of the eroded material.

2.
Materials (Basel) ; 15(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36234179

RESUMO

EPDM/hemp fiber composites with fiber loading of 0-20 phr were prepared by the blending technique on a laboratory electrically heated roller mill. Test specimens were obtained by vulcanization using a laboratory hydraulic press. The elastomer crosslinking and the chemical modification of the hemp fiber surface were achieved by a radical reaction mechanism initiated by di(tert-butylperoxyisopropyl)benzene. The influence of the fiber loading on the mechanical properties, gel fraction, swelling ratio and crosslink degree was investigated. The gel fraction, crosslink density and rubber-hemp fiber interaction were evaluated based on equilibrium solvent-swelling measurements using the Flory-Rehner relation and Kraus and Lorenz-Park equations. The morphology of the EPDM/hemp fiber composites was analyzed by scanning electron microscopy. The water absorption increases as the hemp fiber loading increases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...