Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-480994

RESUMO

Recurrent spillovers of - and {beta}-coronaviruses (CoV) such as acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, SARS-CoV-2, and possibly human CoV (NL63, 229E, OC43, and HKU1) have caused serious morbidity and mortality worldwide. Six receptor binding domains (RBDs) derived from - and {beta}-CoV that are considered to have originated from animals and cross-infected humans were linked to proliferating cell nuclear antigen (PCNA) heterotrimeric subunits, PCNA1, PCNA2, and PCNA3. These were used to form a scaffold-based mosaic multivalent antigen, 6RBD-np. Electron microscopic and atomic force microscopic images show a ring-shaped disk with six protruding RBDs, like jewels in a crown, with a size of 40 nm. Prime-boost immunizations with 6RBD-np in BALB/c mice elicited strong, dose-dependent antibody responses. In human angiotensin converting enzyme 2-transgenic mice, the same immunization induced full-protection against SARS-CoV-2 wild type and Delta challenges, resulting in a 100% survival rate. The mosaic 6RBD-np provides a potential platform for developing a pan-CoV vaccine against newly emerging SARS-CoV-2 variants and future CoV spillovers. SignificanceDespite the arsenal of COVID-19 vaccines, hospitalization and mortality associated with SARS-CoV-2 (acute respiratory syndrome coronavirus 2) variants remain high. There is an urgent need to develop next-generation COVID vaccines that provide broad protection against diseases by current and newly emerging SARS-CoV-2 variants. In this study, six receptor binding domains (RBDs) derived from - and {beta}-CoV were linked to proliferating cell nuclear antigen (PCNA) heterotrimeric scaffolds. They assemble to create a stable mosaic multivalent nanoparticle, 6RBD-np, displaying a ring-shaped disk with six protruding antigens. The prime-boost immunization in BALB/c and human angiotensin converting enzyme 2-transgenic mice with the 6RBD-np elicited strong, dose-dependent antibody responses and induced full-protection against both the SARS-CoV-2 wild type (WT) and Delta challenges. This study provides proof-of-concept that the mosaic 6RBD-np induces 100% protection against SARS-CoV-2 WT and Delta. It provides the potential of co-displaying heterologous antigens for novel vaccine designs, which can be deployed countering future pandemics.

2.
Vet Parasitol ; 250: 1-6, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29329617

RESUMO

Trypanosoma evansi (T. evansi) is the most widely spread pathogenic trypanosome in the world. The control of trypanosomiasis depends on accurate diagnosis and effective treatment. Focusing on the presence of T. evansi in Asia, we developed a detection assay based on tracing phosphate ions (Pi) generated during LAMP targeting the variant surface glycoprotein (VSG) gene of Rode Trypanozoon antigenic type 1.2 (RoTat 1.2 VSG). The diagnostic potential as well as the use of the assay as a test-of-cure method after berenil treatment, was assessed in mice at different time points of infection. In addition, 67 buffalo blood collected from Tongling county, Anhui province, as well as 42 cattle sera from the Shanghai area, were used to evaluate the diagnostic validity of the test. The detection limit of the novel LAMP assay was determined to be as low as 1 fg of T. evansi DNA, while the reaction time for the test was only 30min. Hence it outperforms both microscopy and PCR. In the test-of-cure assessment, successful berenil mediated cure could be confirmed within 48h after treatment. This offers a tremendous advantage over conventional antibody-based diagnostic tools in which successful cure only can be confirmed after months. In the cattle and buffalo screening, the LAMP was able to detect a false-negative determined sample, wrongly classified in a conventional microscopy and PCR screening. Finally, no cross-reactivity was observed with other zoonotic parasites, such as T. evansi type B, T. congolense, T. brucei, Schistosoma japonicum, Plasmodium falciparum, Leishmania donovani, Toxoplasma gondii and Angiostrongylus cantonensis. We conclude that the novel LAMP assay is sensitive, specific and convenient for field use, particularly in areas where infection incidence has become extremely low. The LAMP assay could be used as a tool for trypanosomiasis control and elimination strategies in areas where T. evansi Type A infections are causing a threat to livestock farming.


Assuntos
Doenças dos Bovinos/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/normas , Trypanosoma/genética , Tripanossomíase/veterinária , Medicina Veterinária/métodos , Animais , Bovinos , China , DNA de Protozoário/genética , Limite de Detecção , Camundongos , Sensibilidade e Especificidade , Tripanossomíase/diagnóstico , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...