Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-497749

RESUMO

The RNA modification N6-methyladenosine (m6A) plays a key role in the life cycles of several RNA viruses. Whether this applies to SARS-CoV-2 and whether m6A affects the outcome of COVID-19 disease is still poorly explored. Here we report that the RNA demethylase FTO strongly affects both m6A marking of SARS-CoV-2 and COVID-19 severity. By m6A profiling of SARS-CoV-2, we confirmed in infected cultured cells and showed for the first time in vivo in hamsters that the regions encoding TRS_L and the nucleocapsid protein are multiply marked by m6A, preferentially within RRACH motifs that are specific to {beta}-coronaviruses and well conserved across SARS-CoV-2 variants. In cells, downregulation of the m6A demethylase FTO, occurring upon SARS-CoV-2 infection, increased m6A marking of SARS-CoV-2 RNA and slightly promoted viral replication. In COVID-19 patients, a negative correlation was found between FTO expression and both SARS-CoV-2 expression and disease severity. FTO emerged as a classifier of disease severity and hence a potential stratifier of COVID-19 patients.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-485614

RESUMO

IntroductionThe ongoing COVID-19 pandemic situation caused by SARS-CoV-2 and variants of concern such as B.1.617.2 (Delta) and recently, B.1.1.529 (Omicron) is posing multiple challenges to humanity. The rapid evolution of the virus requires adaptation of diagnostic and therapeutic applications. ObjectivesIn this study, we describe camelid heavy-chain-only antibodies (hcAb) as useful for novel in vitro diagnostic assays and for therapeutic applications due to their neutralizing capacity. MethodsFive antibody candidates were selected out of a naive camelid library by phage display and expressed as full-length IgG2 antibodies. The antibodies were characterized by Western blot, enzyme-linked immunosorbent assays, surface plasmon resonance with regard to their specificity to the recombinant SARS-CoV-2 Spike protein and to SARS-CoV-2 virus-like particles. Neutralization assays were performed with authentic SARS-CoV-2 and pseudotyped viruses (wildtype and Omicron). ResultsAll antibodies efficiently detect recombinant SARS-CoV-2 Spike protein and SARS-CoV-2 virus-like particles in different ELISA setups. The best combination was shown with hcAb B10 as catcher antibody and HRP-conjugated hcAb A7.2 as the detection antibody. Further, four out of five antibodies potently neutralized authentic wildtype SARS-CoV-2 and particles pseudotyped with the SARS-CoV-2 Spike proteins of the wildtype and Omicron variant, sublineage BA.1 at concentrations between 0.1 and 0.35 ng/mL (ND50). ConclusionCollectively, we report novel camelid hcAbs suitable for diagnostics and potential therapy. Graphical Abstract O_FIG_DISPLAY_L [Figure 1] M_FIG_DISPLAY C_FIG_DISPLAY

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-472286

RESUMO

The rapid spread of the SARS-CoV-2 Omicron variant suggests that the virus might become globally dominant. Further, the high number of mutations in the viral spike-protein raised concerns that the virus might evade antibodies induced by infection or vaccination. Here, we report that the Omicron spike was resistant against most therapeutic antibodies but remained susceptible to inhibition by Sotrovimab. Similarly, the Omicron spike evaded neutralization by antibodies from convalescent or BNT162b2-vaccinated individuals with 10- to 44-fold higher efficiency than the spike of the Delta variant. Neutralization of the Omicron spike by antibodies induced upon heterologous ChAdOx1/BNT162b2-vaccination or vaccination with three doses of BNT162b2 was more efficient, but the Omicron spike still evaded neutralization more efficiently than the Delta spike. These findings indicate that most therapeutic antibodies will be ineffective against the Omicron variant and that double immunization with BNT162b2 might not adequately protect against severe disease induced by this variant.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-461776

RESUMO

The interactions between severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and human host factors enable the virus to propagate infections that lead to COVID-19. The spike protein is the largest structural component of the virus and mediates interactions essential for infection, including with the primary ACE2 receptor. We performed two independent cell-based systematic screens to determine whether there are additional proteins by which the spike protein of SARS-CoV-2 can interact with human cells. We discovered that in addition to ACE2, expression of LRRC15 also causes spike protein binding. This interaction is distinct from other known spike attachment mechanisms such as heparan sulfates or lectin receptors. Measurements of orthologous coronavirus spike proteins implied the interaction was restricted to SARS-CoV-2, suggesting LRRC15 represents a novel class of spike binding interaction. We localized the interaction to the C-terminus of the S1 domain, and showed that LRRC15 shares recognition of the ACE2 receptor binding domain. From analyzing proteomics and single-cell transcriptomics, we identify LRRC15 expression as being common in human lung vasculature cells and fibroblasts. Although infection assays demonstrated that LRRC15 alone is not sufficient to permit viral entry, we present evidence it can modulate infection of human cells. This unexpected interaction merits further investigation to determine how SARS-CoV-2 exploits host LRRC15 and whether it could account for any of the distinctive features of COVID-19. In briefWe present evidence from genome-wide screening that the spike protein of SARS-CoV-2 interacts with human cells expressing LRRC15. The interaction is distinct from previously known classes of spike attachment factors, and appears to have emerged recently within the coronavirus family. Although not sufficient for cell invasion, this interaction can modulate viral infection. Our data point to an unappreciated host factor for SARS-CoV-2, with potential relevance to COVID-19. Highlights- Two systematic cell-based screens for SARS-CoV-2 spike protein binding identify LRRC15 as a human host factor - Interaction with LRRC15 is reproducible in different human cell lines and independent of known glycan or ACE2 binding pathways - The C-terminal S1 domain of SARS-CoV-2 spike binds LRRC15 with sub-micromolar affinity, while related coronavirus spikes do not - LRRC15 is expressed in tissues with high ACE2 levels and may modulate infection

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-442935

RESUMO

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered a novel class of small molecule ketobenzothiazole TMPRSS2 inhibitors with significantly improved activity over existing irreversible inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East Respiratory Syndrome Coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice with a half-life of 8.6 hours in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-440101

RESUMO

TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly generate human monoclonal antibodies. After immunizing these mice against the spike protein of SARS-CoV-2, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralized SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of neutralizing antibodies binds to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2 induced weight loss. Thus, we report two clusters of potent non-competing SARS-CoV-2 neutralizing antibodies providing potential candidates for therapy and prophylaxis of COVID-19. The study further supports the use of transgenic animals with human immunoglobulin gene repertoires in pandemic preparedness initiatives.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-415505

RESUMO

Neutrophil-induced oxidative stress is a mechanism of lung injury in COVID-19, and drugs with a functional thiol group ("thiol drugs"), especially cysteamine, have anti-oxidant and anti-inflammatory properties that could limit this injury. Thiol drugs may also alter the redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) and thereby disrupt ACE2 binding. Using ACE2 binding assay, reporter virus pseudotyped with SARS-CoV-2 spikes (ancestral and variants) and authentic SARS-CoV-2 (Wuhan-1), we find that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus entry into cells. Pseudoviruses carrying variant spikes were less efficiently inhibited as compared to pseudotypes bearing an ancestral spike, but the most potent drugs still inhibited the Delta variant in the low millimolar range. IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. In hamsters infected with SARS-CoV-2, intraperitoneal (IP) cysteamine decreased neutrophilic inflammation and alveolar hemorrhage in the lungs but did not decrease viral infection, most likely because IP delivery could not achieve millimolar concentrations in the airways. These data show that thiol drugs inhibit SARS-CoV-2 infection in vitro and reduce SARS-CoV-2-related lung injury in vivo and provide strong rationale for trials of systemically delivered thiol drugs as COVID-19 treatments. We propose that antiviral effects of thiol drugs in vivo will require delivery directly to the airways to ensure millimolar drug concentrations and that thiol drugs with lower thiol pKa values are most likely to be effective. One Sentence SummaryThe effect of cysteamine to decrease SARS-CoV-2 pneumonia in vivo and of multiple thiol drugs to inhibit SARS-CoV-2 infection in vitro provides rationale for clinical trials of thiol drugs in COVID-19.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-374603

RESUMO

The high transmissibility of SARS-CoV-2 is related to abundant replication in the upper airways, which is not observed for the other highly pathogenic coronaviruses SARS-CoV-1 and MERS-CoV. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards different parts of the respiratory tract. First, the SARS-CoV-2 spike (SARS-2-S) reached higher levels in pseudoparticles when produced at 33{degrees}C instead of 37{degrees}C. Even stronger preference for the upper airway temperature of 33{degrees}C was evident for the S protein of HCoV-229E, a common cold coronavirus. In contrast, the S proteins of SARS-CoV-1 and MERS-CoV favored 37{degrees}C, in accordance with their preference for the lower airways. Next, SARS-2-S proved efficiently activated by TMPRSS13, besides the previously identified host cell protease TMPRSS2, which may broaden the cell tropism of SARS-CoV-2. TMPRSS13 was found to be an effective spike activator for the virulent coronaviruses but not the common cold HCoV-229E virus. Activation by these proteases requires pre-cleavage of the SARS-2-S S1/S2 cleavage loop, and both its furin motif and extended loop length proved critical to achieve virus entry into airway epithelial cells. Finally, we show that the D614G mutation in SARS-2-S increases S protein stability and expression at 37{degrees}C, and promotes virus entry via cathepsin B/L activation. These spike properties might promote virus spread, potentially explaining why the G614 variant is currently predominating worldwide. Collectively, our findings indicate how the coronavirus spike protein is fine-tuned towards the temperature and protease conditions of the airways, to enhance virus transmission and pathology. SIGNIFICANCE STATEMENTThe rapid spread of SARS-CoV-2, the cause of COVID-19, is related to abundant replication in the upper airways, which is not observed for other highly pathogenic human coronaviruses. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards different parts of the respiratory tract. Coronavirus spikes exhibit distinct temperature preference to precisely match the upper (~33{degrees}C) or lower (37{degrees}C) airways. We identified airway proteases that activate the spike for virus entry into cells, including one protease that may mediate coronavirus virulence. Also, a link was seen between spike stability and entry via endosomal proteases. This mechanism of spike fine-tuning could explain why the SARS-CoV-2 spike-D614G mutant is more transmissible and therefore globally predominant.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-241414

RESUMO

Since the pandemic spread of SARS-CoV-2, the virus has exhibited remarkable genome stability, but recent emergence of novel variants show virus evolution potential. Here we show that SARS-CoV-2 rapidly adapts to Vero E6 cells that leads to loss of furin cleavage motif in spike protein. The adaptation is achieved by asymptotic expansion of minor virus subpopulations to dominant genotype, but wildtype sequence is maintained at low percentage in the virus swarm, and mediate reverse adaptation once the virus is passaged on human lung cells. The Vero E6-adapted virus show defected cell entry in human lung cells and the mutated spike variants cannot be processed by furin or TMPRSS2. However, the mutated S1/S2 site is cleaved by cathepsins with higher efficiency. Our data show that SARS-CoV-2 can rapidly adapt spike protein to available proteases and advocate for deep sequence surveillance to identify virus adaptation potential and novel variant emergence. Significance StatementRecently emerging SARS-CoV-2 variants B1.1.1.7 (UK), B.1.351 (South Africa) and B.1.1.248 (Brazil) harbor spike mutation and have been linked to increased virus pathogenesis. The emergence of these novel variants highlight coronavirus adaptation and evolution potential, despite the stable consensus genotype of clinical isolates. We show that subdominant variants maintained in the virus population enable the virus to rapidly adapt upon selection pressure. Although these adaptations lead to genotype change, the change is not absolute and genome with original genotype are maintained in virus swarm. Thus, our results imply that the relative stability of SARS-CoV-2 in numerous independent clinical isolates belies its potential for rapid adaptation to new conditions.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20151407

RESUMO

Neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into cells using surface-expressed angiotensin-converting enzyme 2 (ACE2). We developed a surrogate neutralization test (sVNT) to assess at what degree serum antibodies interfere with the binding of SARS-CoV-2-S-RBD to ACE2. The sVNT revealed neutralizing anti-SARS-CoV-2-S antibodies in the sera of 90% of mildly and 100% of severely affected coronavirus-disease-2019 (COVID-19) convalescent patients. Importantly, sVNT results correlated strongly to the results from pseudotyped-vesicular stomatitis virus-vector-based neutralization assay and to levels of anti-SARS-CoV-2-S1 IgG and IgA antibodies. Moreover, levels of neutralizing antibodies also correlated to duration and severity of clinical symptoms, but not patient age or gender. These findings together with the sVNT will not only be important for evaluating the prevalence of neutralizing antibodies in a population but also for identifying promising plasma donors for successful passive antibody therapy.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-010165

RESUMO

The pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV-1) and COVID-19 coronavirus (SARS-CoV-2) have all emerged into the human population with devastating consequences. These viruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics to combat these highly pathogenic coronaviruses. Here, we describe the isolation and characterization of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs are capable of potently neutralizing MERS-CoV or SARS-CoV-1 S pseudotyped viruses. The crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs block receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S, and demonstrate that this cross-reactive VHH is capable of neutralizing SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-979260

RESUMO

Zoonotic coronaviruses (CoVs) are significant threats to global health, as exemplified by the recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1. Host immune responses to CoV are complex and regulated in part through antiviral interferons. However, the interferon-stimulated gene products that inhibit CoV are not well characterized2. Here, we show that interferon-inducible lymphocyte antigen 6 complex, locus E (LY6E) potently restricts cellular infection by multiple CoVs, including SARS-CoV, SARS-CoV-2, and Middle East respiratory syndrome coronavirus (MERS-CoV). Mechanistic studies revealed that LY6E inhibits CoV entry into cells by interfering with spike protein-mediated membrane fusion. Importantly, mice lacking Ly6e in hematopoietic cells were highly susceptible to murine CoV infection. Exacerbated viral pathogenesis in Ly6e knockout mice was accompanied by loss of hepatic and splenic immune cells and reduction in global antiviral gene pathways. Accordingly, we found that Ly6e directly protects primary B cells and dendritic cells from murine CoV infection. Our results demonstrate that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis. These findings advance our understanding of immune-mediated control of CoV in vitro and in vivo, knowledge that could help inform strategies to combat infection by emerging CoV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...