Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Toxicol Res (Camb) ; 9(5): 726-734, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33178433

RESUMO

Hepatic encephalopathy is a pathophysiological complication of acute liver failure, which may be triggered by hepatotoxic drugs such as acetaminophen (APAP). Although APAP is safe in therapeutic concentration, APAP overdose may induce neurotoxicity, which is mainly associated with oxidative stress. Caffeine is a compound widely found in numerous natural beverages. However, the neuroprotective effect of caffeine remains unclear during APAP intoxication. The present study aimed to investigate the possible modulatory effects of caffeine on brain after APAP intoxication. Mice received intraperitoneal injections of APAP (250 mg/kg) and/or caffeine (20 mg/kg) and, 4 h after APAP administration, samples of brain and blood were collected for the biochemical analysis. APAP enhanced the transaminase activity levels in plasma, increased oxidative stress biomarkers (lipid peroxidation and reactive oxygen species), promoted an imbalance in endogenous antioxidant system in brain homogenate and increased the mortality. In contrast, APAP did not induce dysfunction of the mitochondrial bioenergetics. Co-treatment with caffeine modulated the biomarkers of oxidative stress as well as antioxidant system in brain. Besides, survival assays demonstrated that caffeine protective effects could be dose- and time-dependent. In addition, caffeine promoted an increase of mitochondrial bioenergetics response in brain by the enhancement of the oxidative phosphorylation, which could promote a better energy supply necessary for brain recovery. In conclusion, caffeine prevented APAP-induced biochemical alterations in brain and reduced lethality in APAP-intoxicated mice, these effects may relate to the preservation of the cellular antioxidant status, and these therapeutic properties could be useful in the treatment of hepatic encephalopathy induced by APAP intoxication.

2.
Neurotoxicology ; 74: 272-281, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31415799

RESUMO

The signal transmission in the nervous system operates through a sensitive balance between excitatory (E) inputs and inhibitory (I) responses. Imbalances in this system contribute to the development of pathologies such as seizures. In Caenorhabditis elegans, the locomotor circuit operates via the coordinated activity of cholinergic excitatory (E) and GABAergic inhibitory (I) transmission. Changes in E/I inputs can cause uncontrolled electrical discharges, mimicking the physiology of seizures. Molecules derived from 1,3,4-oxadiazole have been found to exhibit diverse biological activities, including anticonvulsant effect. In this work, we study the activity of the compound 2-[(4-methoxyphenylselenyl)methylthio]-5-phenyl-1,3,4-oxadiazole (MPMT-OX) in the GABAergic and cholinergic systems. We demonstrate that MPMT-OX reduced the locomotor activity of C. elegans with a normal balance between the E/I systems and increased the resistance to paralysis in worms exposed to pentylenetetrazol and aldicarb. MPMT-OX increased seizure resistance and assisted in the recovery of locomotor activity in worms with deletions in the genes unc-46, which regulates the transport of GABA into vesicles, and unc-49, which encodes the GABAA receptor. C. elegans with deletions in the unc-25 and unc-47 genes did not respond to treatment. Therefore, we suggest that the compound MPMT-OX upregulates GABAergic signaling in a manner dependent on the unc-25 gene, which is responsible for GABA synthesis, and unc-47, which encodes the vesicular GABA transporter.


Assuntos
Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans , Agonistas GABAérgicos/farmacologia , Oxidiazóis/farmacologia , Convulsões/prevenção & controle , Transmissão Sináptica/efeitos dos fármacos , Animais , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Sistema Nervoso Parassimpático/efeitos dos fármacos , Convulsões/induzido quimicamente , Convulsões/psicologia , Vesículas Sinápticas/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia
3.
ACS Omega ; 3(1): 734-743, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023787

RESUMO

Partition constants (KD°), molecular dynamics (T1, T2, and DOSY measurements), thermal stability, and toxicity of dicationic ionic liquids (ILs) were determined. The dicationic ILs derived from 1,n-bis(3-methylimidazolim-1-yl)octane, [BisOct(MIM)2][2X] (in which X = Cl, Br, NO3, SCN, BF4, and NTf2), were evaluated to verify the influence of anion structure on the IL properties. A monocationic IL [Oct(MIM)][Br] was also monitored for comparison. In general, the solubility of the ILs followed the anion free energy of hydration (ΔG°hyd). The thermokinetic and thermodynamic functions of activation of the ILs were determined via thermogravimetric data, and it was observed that polyatomic anions influence the decomposition mechanism of these IL structures. Furthermore, [Oct(MIM)][Br] had a decomposition rate greater than that of the dicationic analogue, and the thermodynamic parameters of activation data corroborate these results. Finally, the dicationic ILs did not indicate toxic effects (LD50 > 40 mM).

4.
Life Sci ; 193: 234-241, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29107792

RESUMO

AIMS: Many studies have been demonstrating the role of mitochondrial function in acetaminophen (APAP) hepatotoxicity. Since APAP is commonly consumed with caffeine, this work evaluated the effects of the combination of APAP and caffeine on hepatic mitochondrial bioenergetic function in mice. MAIN METHODS: Mice were treated with caffeine (20mg/kg, intraperitoneal (i.p.)) or its vehicle and, after 30minutes, APAP (250mg/kg, i.p.) or its vehicle. Four hours later, livers were removed, and the parameters associated with mitochondrial function and oxidative stress were evaluated. Hepatic cellular oxygen consumption was evaluated by high-resolution respirometry (HRR). KEY FINDINGS: APAP treatment decreased cellular oxygen consumption and mitochondrial complex activities in the livers of mice. Additionally, treatment with APAP increased swelling of isolated mitochondria from mice livers. On the other hand, caffeine administered with APAP was able to improve hepatic mitochondrial bioenergetic function. Treatment with APAP increased lipid peroxidation and reactive oxygen species (ROS) production and decreased glutathione levels in the livers of mice. Caffeine administered with APAP was able to prevent lipid peroxidation and the ROS production in mice livers, which may be associated with the improvement of mitochondrial function caused by caffeine treatment. SIGNIFICANCE: We suggest that the antioxidant effects of caffeine and/or its interactions with mitochondrial bioenergetics may be involved in its beneficial effects against APAP hepatotoxicity.


Assuntos
Acetaminofen/metabolismo , Cafeína/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Acetaminofen/farmacologia , Acetaminofen/toxicidade , Animais , Antioxidantes/farmacologia , Cafeína/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Metabolismo Energético/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Peroxidação de Lipídeos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
5.
Toxicol Mech Methods ; 24(8): 529-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24861666

RESUMO

Diphenyl ditelluride (PhTe)2 is a versatile molecule used in the organic synthesis and it is a potential prototype for the development of novel biologically active molecules. The mechanism(s) involved in (PhTe)2 toxicity is(are) elusive, but thiol oxidation of critical proteins are important targets. Consequently, the possible remedy of its toxicity by thiol-containing compounds is of experimental and clinical interest. The present study aimed to investigate putative mechanisms underlying the toxicity of (PhTe)2 in vivo. We assessed behavioral and oxidative stress parameters in mice, including the modulation of antioxidant enzymatic defense systems. In order to mitigate such toxicity, N-acetylcysteine (NAC) was administered before (3 d) and simultaneously with (PhTe)2 (7 d). Mice were separated into six groups receiving daily injections of (1) TFK (2.5 ml/kg, intraperitonealy (i.p.)) plus canola oil (10 ml/kg, subcutaneously (s.c.)), (2) NAC (100 mg/kg, i.p.) plus canola oil s.c., (3) TFK i.p. plus (PhTe)2 (10 µmol/kg, s.c.), (4) TFK i.p. plus (PhTe)2 (50 µmol/kg, s.c.), (5) NAC plus (PhTe)2 (10 µmol/kg, s.c.), and (6) NAC plus (PhTe)2 (50 µmol/kg, s.c.). (PhTe)2 treatment started on the fourth day of treatment with NAC. Results demonstrated that (PhTe)2 induced behavioral alterations and inhibited important selenoenzymes (thioredoxin reductase and glutathione peroxidase). Treatments produced no or minor effects on the activities of antioxidant enzymes catalase and glutathione reductase. Contrary to expected, NAC co-administration did not protect against the deleterious effects of (PhTe)2. Other low-molecular-thiol containing molecules should be investigated to determine whether or not they can be effective against ditellurides.


Assuntos
Derivados de Benzeno/toxicidade , Poluentes Ambientais/toxicidade , Glutationa Peroxidase/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Síndromes Neurotóxicas/enzimologia , Compostos Organometálicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Acetilcisteína/administração & dosagem , Acetilcisteína/uso terapêutico , Animais , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Derivados de Benzeno/administração & dosagem , Derivados de Benzeno/antagonistas & inibidores , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Relação Dose-Resposta a Droga , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/antagonistas & inibidores , Glutationa Peroxidase/metabolismo , Injeções Intraperitoneais , Injeções Subcutâneas , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Síndromes Neurotóxicas/prevenção & controle , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...