Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555562

RESUMO

The harmful effects of silver nanoparticles (AgNPs) have been confirmed in many organisms, but the mechanism of their toxicity is not yet fully understood. In biological systems, AgNPs tend to aggregate and dissolve, so they are often stabilized by coatings that influence their physico-chemical properties. In this study, the effects of AgNPs with different coatings [polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB)] on oxidative stress appearance and proteome changes in tobacco (Nicotiana tabacum) seedlings have been examined. To discriminate between the nanoparticulate Ag form from the ionic one, the treatments with AgNO3, a source of Ag+ ions, were also included. Ag uptake and accumulation were found to be similarly effective upon exposure to all treatment types, although positively charged AgNP-CTAB showed less stability and a generally stronger impact on the investigated parameters in comparison with more stable and negatively charged AgNP-PVP and ionic silver (AgNO3). Both AgNP treatments induced reactive oxygen species (ROS) formation and increased the expression of proteins involved in antioxidant defense, confirming oxidative stress as an important mechanism of AgNP phytotoxicity. However, the mechanism of seedling responses differed depending on the type of AgNP used. The highest AgNP-CTAB concentration and CTAB coating resulted in increased H2O2 content and significant damage to lipids, proteins and DNA molecules, as well as a strong activation of antioxidant enzymes, especially CAT and APX. On the other hand, AgNP-PVP and AgNO3 treatments induced the nonenzymatic antioxidants by significantly increasing the proline and GSH content. Exposure to AgNP-CTAB also resulted in more noticeable changes in the expression of proteins belonging to the defense and stress response, carbohydrate and energy metabolism and storage protein categories in comparison to AgNP-PVP and AgNO3. Cysteine addition significantly reduced the effects of AgNP-PVP and AgNO3 for the majority of investigated parameters, indicating that AgNP-PVP toxicity mostly derives from released Ag+ ions. AgNP-CTAB effects, however, were not alleviated by cysteine addition, suggesting that their toxicity derives from the intrinsic properties of the nanoparticles and the coating itself.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Nicotiana/metabolismo , Plântula/metabolismo , Prata/química , Proteômica , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Cetrimônio/farmacologia , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Nitrato de Prata/toxicidade
2.
Int J Mol Sci ; 21(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414057

RESUMO

Silver nanoparticles (AgNPs) are used in a wide range of consumer products because of their excellent antimicrobial properties. AgNPs released into the environment are prone to transformations such as aggregation, oxidation, or dissolution so they are often stabilised by coatings that affect their physico-chemical properties and change their effect on living organisms. In this study we investigated the stability of polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB) coated AgNPs in an exposure medium, as well as their effect on tobacco germination and early growth. AgNP-CTAB was found to be more stable in the solid Murashige and Skoog (MS) medium compared to AgNP-PVP. The uptake and accumulation of silver in seedlings was equally efficient after exposure to both types of AgNPs. However, AgNP-PVP induced only mild toxicity on seedlings growth, while AgNP-CTAB caused severe negative effects on all parameters, even compared to AgNO3. Moreover, CTAB coating itself exerted negative effects on growth. Cysteine addition generally alleviated AgNP-PVP-induced negative effects, while it failed to improve germination and growth parameters after exposure to AgNP-CTAB. These results suggest that the toxic effects of AgNP-PVP are mainly a consequence of release of Ag+ ions, while phytotoxicity of AgNP-CTAB can rather be ascribed to surface coating itself.


Assuntos
Germinação/efeitos dos fármacos , Nanopartículas Metálicas/química , Nicotiana/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Íons/química , Oxirredução , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Prata/química , Prata/farmacologia , Nicotiana/efeitos dos fármacos
3.
Chemosphere ; 209: 640-653, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29958162

RESUMO

Since silver nanoparticles (AgNPs) are a dominant nanomaterial in consumer products, there is growing concern about their impact on the environment. Although numerous studies on the effects of AgNPs on living organisms have been conducted, the interaction of AgNPs with plants has not been fully clarified. To reveal the plant mechanisms activated after exposure to AgNPs and to differentiate between effects specific to nanoparticles and ionic silver, we investigated the physiological, ultrastructural and proteomic changes in seedlings of tobacco (Nicotiana tabacum) exposed to commercial AgNPs and ionic silver (AgNO3) from the seed stage. A higher Ag content was measured in seedlings exposed to AgNPs than in those exposed to the same concentration of AgNO3. However, the results on oxidative stress parameters obtained revealed that, in general, higher toxicity was recorded in AgNO3-treated seedlings than in those exposed to nanosilver. Ultrastructural analysis of root cells confirmed the presence of silver in the form of nanoparticles, which may explain the lower toxicity of AgNPs. However, the ultrastructural changes of chloroplasts as well as proteomic study showed that both AgNPs and AgNO3 can affect photosynthesis. Moreover, the majority of the proteins involved in the primary metabolism were up-regulated after both types of treatments, indicating that enhanced energy production, which can be used to reinforce defensive mechanisms, enables plants to cope with silver-induced toxicity.


Assuntos
Nanopartículas Metálicas/química , Nicotiana/química , Proteômica/métodos , Plântula/efeitos dos fármacos , Nitrato de Prata/química , Prata/química
4.
Environ Sci Pollut Res Int ; 25(6): 5590-5602, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29222658

RESUMO

The small size of nanoparticles (NPs), with dimensions between 1 and 100 nm, results in unique chemical and physical characteristics, which is why they are implemented in various consumer products. Therefore, an important concern is the potential detrimental impact of NPs on the environment. As plants are a vital part of ecosystem, investigation of the phytotoxic effects of NPs is particularly interesting. This study investigated the potential phytotoxicity of silver nanoparticles (AgNPs) on tobacco (Nicotiana tabacum) plants and compared it with the effects of the same AgNO3 concentrations. Accumulation of silver in roots and leaves was equally efficient after both AgNP and AgNO3 treatment, with predominant Ag levels found in the roots. Exposure to AgNPs did not result in elevated values of oxidative stress parameters either in roots or in leaves, while AgNO3 induced oxidative stress in both plant tissues. In the presence of both AgNPs and AgNO3, root meristem cells became highly vacuolated, which indicates that vacuoles might be the primary storage target for accumulated Ag. Direct AgNP uptake by root cells was confirmed. Leaf ultrastructural studies revealed changes mainly in the size of chloroplasts of AgNP-treated and AgNO3-treated plants. All of these findings indicate that nano form of silver is less toxic to tobacco plants than silver ions.


Assuntos
Poluentes Ambientais/toxicidade , Nanopartículas Metálicas/toxicidade , Nicotiana/efeitos dos fármacos , Prata/toxicidade , Relação Dose-Resposta a Droga , Poluentes Ambientais/química , Íons , Meristema/efeitos dos fármacos , Meristema/metabolismo , Nanopartículas Metálicas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Prata/química , Nitrato de Prata/química , Nitrato de Prata/toxicidade , Propriedades de Superfície , Nicotiana/metabolismo
5.
PLoS One ; 9(1): e87582, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475312

RESUMO

The objective of the present study was to investigate the effects of cadmium-zinc (Cd-Zn) interactions on their uptake, oxidative damage of cell macromolecules (lipids, proteins, DNA) and activities of antioxidative enzymes in tobacco seedlings as well as roots and leaves of adult plants. Seedlings and plants were exposed to Cd (10 µM and 15 µM) and Zn (25 µM and 50 µM) as well as their combinations (10 µM or 15 µM Cd with either 25 µM or 50 µM Zn). Measurement of metal accumulation exhibited that Zn had mostly positive effect on Cd uptake in roots and seedlings, while Cd had antagonistic effect on Zn uptake in leaves and roots. According to examined oxidative stress parameters, in seedlings and roots individual Cd treatments induced oxidative damage, which was less prominent in combined treatments, indicating that the presence of Zn alleviates oxidative stress. However, DNA damage found in seedlings, and lower glutathione reductase (GR) and superoxide dismutase (SOD) activity recorded in both seedlings and roots, after individual Zn treatments, indicate that Zn accumulation could impose toxic effects. In leaves, oxidative stress was found after exposure to Cd either alone or in combination with Zn, thus implying that in this tissue Zn did not have alleviating effects. In conclusion, results obtained in different tobacco tissues suggest tissue-dependent Cd-Zn interactions, which resulted in activation of different mechanisms involved in the protection against metal stress.


Assuntos
Cádmio/química , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Zinco/química , Análise de Variância , Cádmio/farmacocinética , Ensaio Cometa , Glutationa Redutase/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Zinco/farmacocinética , Zinco/farmacologia
6.
Tree Physiol ; 32(3): 346-54, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22427374

RESUMO

The fate of chloroplast DNA (cpDNA) during plastid development and conversion between various plastid types is still not very well understood. This is especially true for the cpDNA found in plastids of naturally senescing leaves. Here, we describe changes in plastid nucleoid structure accompanied with cpDNA degradation occurring during natural senescence of the free-growing deciduous woody species Acer pseudoplatanus L. Natural senescence was investigated using three types of senescing leaves: green (G), yellow-green (YG) and yellow (Y). The extent of senescence was evaluated at the level of photosynthetic pigment degradation, accumulation of starch and plastid ultrastructure. Determination of cpDNA amount was carried out by in planta visualization with 4,6-diamidino-2-phenylindole, by Southern hybridization, and by dot-blot using an rbcL gene probe. During natural senescence, plastid nucleoids undergo structural rearrangements accompanied by an almost complete loss of cpDNA. Furthermore, senescence-associated protein components exhibiting strong binding to an ∼10kbp rbcL-containg cpDNA fragment were identified. This interaction might be important for rbcL expression and Rubisco degradation during the course of natural senescence in trees.


Assuntos
Acer/química , Acer/fisiologia , Senescência Celular/fisiologia , DNA de Cloroplastos/química , Ribulose-Bifosfato Carboxilase/genética , Acer/enzimologia , Acer/genética , Carotenoides/análise , Clorofila/análise , Clorofila A , Cloroplastos/genética , Clima , DNA de Cloroplastos/genética , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/fisiologia , Amido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...