Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611118

RESUMO

BACKGROUND: The aim of this study was to record and assess the efficacy and safety ofthromboprophylaxis with an intermediate dose of Tinzaparin in lung cancer patients with high thrombotic risk. METHODS: This was a non-interventional, single-arm, prospective cohort study of lung cancer patients who received thromboprophylaxis with Tinzaparin 10.000 Anti-Xa IU in 0.5 mL, OD, used in current clinical practice. Enrolled ambulatory patients signed informed consent. Anti-Xa levels were tested. RESULTS: In total, 140 patients were included in the study, of which 81.4% were males. The histology of the tumor was mainly adenocarcinoma. Lung cancer patients with high thrombotic risk based on tumor, patient, treatment, and laboratory-related factors were enrolled. Only one patient experienced a thrombotic event (0.7%), and 10 patients had bleeding events (7.1%), including only one major event. Anti-Xa levels measured at 10 days and 3 months did not differ significantly between patients who developed hemorrhagic events and those who did not (p = 0.26 and p = 0.32, respectively). CONCLUSION: Thromboprophylaxis with an intermediate Tinzaparin dose in high thrombotic-risk lung cancer patients is a safe and effective choice for the prevention of VTE.

2.
Cancers (Basel) ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201431

RESUMO

Despite ongoing oncological advances, pancreatic ductal adenocarcinoma (PDAC) continues to have an extremely poor prognosis with limited targeted and immunotherapeutic options. Its genomic background has not been fully characterized yet in large-scale populations all over the world. Methods: Replicating a recent study from China, we collected tissue samples from consecutive Greek patients with pathologically-confirmed metastatic/unresectable PDAC and retrospectively investigated their genomic landscape using next generation sequencing (NGS). Findings: From a cohort of 409 patients, NGS analysis was successfully achieved in 400 cases (56.50% males, median age: 61.8 years). Consistent with a previous study, KRAS was the most frequently mutated gene in 81.50% of tested samples, followed by TP53 (50.75%), CDKN2 (8%), and SMAD4 (7.50%). BRCA1/2 variants with on-label indications were detected in 2%, and 87.50% carried a variant associated with off-label treatment (KRAS, ERBB2, STK11, or HRR-genes), while 3.5% of the alterations had unknown/preliminary-studied actionability (TP53/CDKN2A). Most of HRR-alterations were in intermediate- and low-risk genes (CHEK2, RAD50, RAD51, ATM, FANCA, FANCL, FANCC, BAP1), with controversial actionability: 8% harbored a somatic non-BRCA1/2 alteration, 6 cases had a high-risk alteration (PALB2, RAD51C), and one co-presented a PALB2/BRCA2 alteration. Elevated LOH was associated with HRR-mutated status and TP53 mutations while lowered LOH was associated with KRAS alterations. Including TMB/MSI data, the potential benefit from an NGS-oriented treatment was increased from 1.91% to 13.74% (high-MSI: 0.3%, TMB > 10 muts/MB: 12.78%). TMB was slightly increased in females (4.75 vs. 4.46 muts/MB) and in individuals with age > 60 (4.77 vs. 4.40 muts/MB). About 28.41% showed PD-L1 > 1% either in tumor or immune cells, 15.75% expressed PD-L1 ≥ 10%, and only 1.18% had PD-L1 ≥ 50%. This is the largest depiction of real-world genomic characteristics of European patients with PDAC, which offers some useful clinical and research insights.

3.
Vaccines (Basel) ; 10(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298629

RESUMO

COVID-19 is an infectious disease caused by the SARS-CoV-2 coronavirus and characterized by an extremely variable disease course, ranging from asymptomatic cases to severe illness. Although all individuals may be infected by SARS-CoV-2, some people, including those of older age and/or with certain health conditions, including cardiovascular disease, diabetes, cancer, and chronic respiratory disease, are at higher risk of getting seriously ill. For cancer patients, there are both direct consequences of the COVID-19 pandemic, including that they are more likely to be infected by SARS-CoV-2 and more prone to develop severe complications, as well as indirect effects, such as delayed cancer diagnosis or treatment and deferred tests. Accumulating data suggest that aberrant SARS-CoV-2 immune response can be attributed to impaired interferon signaling, hyper-inflammation, and delayed adaptive immune responses. Interestingly, the SARS-CoV-2-induced immunological abnormalities, DNA damage induction, generation of micronuclei, and the virus-induced telomere shortening can abnormally activate the DNA damage response (DDR) network that plays a critical role in genome diversity and stability. We present a review of the current literature regarding the molecular mechanisms that are implicated in the abnormal interplay of the immune system and the DDR network, possibly contributing to some of the COVID-19 complications.

4.
Biomedicines ; 10(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35740268

RESUMO

The deregulated DNA damage response (DDR) network is associated with the onset and progression of cancer. Herein, we searched for DDR defects in peripheral blood mononuclear cells (PBMCs) from lung cancer patients, and we evaluated factors leading to the augmented formation of DNA damage and/or its delayed/decreased removal. In PBMCs from 20 lung cancer patients at diagnosis and 20 healthy controls (HC), we analyzed oxidative stress and DDR-related parameters, including critical DNA repair mechanisms and apoptosis rates. Cancer patients showed higher levels of endogenous DNA damage than HC (p < 0.001), indicating accumulation of DNA damage in the absence of known exogenous genotoxic insults. Higher levels of oxidative stress and apurinic/apyrimidinic sites were observed in patients rather than HC (all p < 0.001), suggesting that increased endogenous DNA damage may emerge, at least in part, from these intracellular factors. Lower nucleotide excision repair and double-strand break repair capacities were found in patients rather than HC (all p < 0.001), suggesting that the accumulation of DNA damage can also be mediated by defective DNA repair mechanisms. Interestingly, reduced apoptosis rates were obtained in cancer patients compared with HC (p < 0.001). Consequently, the expression of critical DDR-associated genes was found deregulated in cancer patients. Together, oxidative stress and DDR-related aberrations contribute to the accumulation of endogenous DNA damage in PBMCs from lung cancer patients and can potentially be exploited as novel therapeutic targets and non-invasive biomarkers.

6.
Biomedicines ; 10(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35052761

RESUMO

Ovarian cancer (OC) is the seventh most common type of cancer in women worldwide. Treatment for OC usually involves a combination of surgery and chemotherapy with carboplatin and paclitaxel. Platinum-based agents exert their cytotoxic action through development of DNA damage, including the formation of intra- and inter-strand cross-links, as well as single-nucleotide damage of guanine. Although these agents are highly efficient, intrinsic and acquired resistance during treatment are relatively common and remain a major challenge for platinum-based therapy. There is strong evidence to show that the functionality of various DNA repair pathways significantly impacts tumor response to treatment. Various DNA repair molecular components were found deregulated in ovarian cancer, including molecules involved in homologous recombination repair (HRR), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end-joining (NHEJ), and base excision repair (BER), which can be possibly exploited as novel therapeutic targets and sensitive/effective biomarkers. This review attempts to summarize published data on this subject and thus help in the design of new mechanistic studies to better understand the involvement of the DNA repair in the platinum drugs resistance, as well as to suggest new therapeutic perspectives and potential targets.

7.
PLoS One ; 10(2): e0117654, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25659114

RESUMO

Ovarian carcinoma (OC) is the most lethal gynecological malignancy. Despite the advances in the treatment of OC with combinatorial regimens, including surgery and platinum-based chemotherapy, patients generally exhibit poor prognosis due to high chemotherapy resistance. Herein, we tested the hypothesis that DNA damage response (DDR) pathways are involved in resistance of OC patients to platinum chemotherapy. Selected DDR signals were evaluated in two human ovarian carcinoma cell lines, one sensitive (A2780) and one resistant (A2780/C30) to platinum treatment as well as in peripheral blood mononuclear cells (PBMCs) from OC patients, sensitive (n = 7) or resistant (n = 4) to subsequent chemotherapy. PBMCs from healthy volunteers (n = 9) were studied in parallel. DNA damage was evaluated by immunofluorescence γH2AX staining and comet assay. Higher levels of intrinsic DNA damage were found in A2780 than in A2780/C30 cells. Moreover, the intrinsic DNA damage levels were significantly higher in OC patients relative to healthy volunteers, as well as in platinum-sensitive patients relative to platinum-resistant ones (all P<0.05). Following carboplatin treatment, A2780 cells showed lower DNA repair efficiency than A2780/C30 cells. Also, following carboplatin treatment of PBMCs ex vivo, the DNA repair efficiency was significantly higher in healthy volunteers than in platinum-resistant patients and lowest in platinum-sensitive ones (t1/2 for loss of γH2AX foci: 2.7±0.5h, 8.8±1.9h and 15.4±3.2h, respectively; using comet assay, t1/2 of platinum-induced damage repair: 4.8±1.4h, 12.9±1.9h and 21.4±2.6h, respectively; all P<0.03). Additionally, the carboplatin-induced apoptosis rate was higher in A2780 than in A2780/C30 cells. In PBMCs, apoptosis rates were inversely correlated with DNA repair efficiencies of these cells, being significantly higher in platinum-sensitive than in platinum-resistant patients and lowest in healthy volunteers (all P<0.05). We conclude that perturbations of DNA repair pathways as measured in PBMCs from OC patients correlate with the drug sensitivity of these cells and reflect the individualized response to platinum-based chemotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Carboplatina/administração & dosagem , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas , Adulto , Idoso , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Platina/administração & dosagem , Taxa de Sobrevida
8.
Br J Clin Pharmacol ; 74(5): 842-53, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22432918

RESUMO

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: Previous studies have indicated that the levels of DNA damage induced in peripheral blood mononuclear cells by the alkylating drugs melphalan, cisplatin and carboplatin can serve as useful biomarkers predictive of the therapeutic response of cancer patients to these drugs. WHAT THIS STUDY ADDS: In the present study we developed a quantitative PCR-based assay, for the measurement of DNA damage. The advantages of this methodology are based on: its far greater sensitivity (about 250 times) than the traditional Southern blot-based method (the detection limit is ~10-20 lesions/10(6) nucleotides from the equivalent DNA of ~8000 cells); its simplicity and speed (results obtained within ~8h); its excellent reproducibility, with a coefficient of variance of 10-15% for different DNA preparations from similarly treated cells; its requirement for only minute amounts of material, and; the avoidance of radioisotope labeling. Moreover, emphasis was given to translate basic research findings into clinical practice through the validation of this assay for prediction of clinical outcome in multiple myeloma patients. AIM: In order to develop and validate a simple, sensitive and rapid method for the quantitation of alkylating drug-induced DNA damage. METHODS: HepG2 cells and blood samples were treated with alkylating drugs (melphalan, cisplatin, carboplatin). Gene-specific damage was examined using Southern blot and a multiplex long quantitative PCR (QPCR) carried out in a 7 kb fragment (part of the p53 gene) and a 0.5 kb fragment (part of the IFN-ß1 sequence; internal standard). RESULTS: The extent of PCR amplification of a p53 fragment was inversely proportional to the treatment concentrations of all anticancer drugs examined, indicating a dose-related inhibition by the DNA adducts formed. Parallel analysis of the same samples using both Southern blot and QPCR showed that the DNA adducts measured by QPCR corresponded to the interstrand cross-links in the case of melphalan, and to total drug-induced lesions in the case of the platinum drugs. The detection limit was ~10-20 lesions/10(6) nucleotides using DNA from ~8000 cells. The method is about 250 times more sensitive than the Southern blot-based method and the reproducibility is excellent, with an intraday coefficient of variance (CV) of 5-9% and an interday CV of 4-12%. Application of the QPCR assay to ex vivo melphalan-treated peripheral blood mononuclear cells from multiple myeloma patients, showed that the positive predictive value of this assay for clinical response to melphalan therapy was 92.9%. CONCLUSION: The PCR-based assay developed in this study can be used for the selection of cancer patients more likely to benefit from therapeutic treatment with alkylating drugs.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Reação em Cadeia da Polimerase Multiplex/métodos , Seleção de Pacientes , Adulto , Southern Blotting , Carboplatina/farmacologia , Cisplatino/farmacologia , Adutos de DNA/farmacologia , Feminino , Genes p53/genética , Células Hep G2 , Humanos , Interferon beta/genética , Leucócitos Mononucleares/metabolismo , Limite de Detecção , Masculino , Melfalan/farmacologia , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...