Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1817(8): 1490-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22609146

RESUMO

Water deficit is one of the most important environmental factors limiting sustainable crop yields and it requires a reliable tool for fast and precise quantification. In this work we use simultaneously recorded signals of photoinduced prompt fluorescence (PF) and delayed fluorescence (DF) as well as modulated reflection (MR) of light at 820nm for analysis of the changes in the photosynthetic activity in detached bean leaves during drying. Depending on the severity of the water deficit we identify different changes in the primary photosynthetic processes. When the relative water content (RWC) is decreased to 60% there is a parallel decrease in the ratio between the rate of excitation trapping in the Photosystem (PS) II reaction center and the rate of reoxidation of reduced PSII acceptors. A further decrease of RWC to 20% suppresses the electron transfer from the reduced plastoquinone pool to the PSI reaction center. At RWC below values 15%, the reoxidation of the photoreduced primary quinone acceptor of PSII, Q(A)(-), is inhibited and at less than 5%, the primary photochemical reactions in PSI and II are inactivated. Using the collected sets of PF, DF and MR signals, we construct and train an artificial neural network, capable of recognizing the RWC in a series of "unknown" samples with a correlation between calculated and gravimetrically determined RWC values of about R(2)≈0.98. Our results demonstrate that this is a reliable method for determination of RWC in detached leaves and after further development it could be used for quantifying of drought stress of crop plants in situ. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Assuntos
Secas , Redes Neurais de Computação , Fotossíntese , Folhas de Planta/metabolismo , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo
2.
Physiol Plant ; 146(1): 121-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22390568

RESUMO

The effect of prolonged light deprivation on ultrastructure, pigment composition and functions of photosynthetic apparatus of the resurrection plant Haberlea rhodopensis Friv. (Gesneriaceae) was studied. For this purpose, intact plants were kept in darkness for up to 6 months. Haberlea rhodopensis demonstrated extraordinary ability to preserve its photosynthetic machinery intact despite complete absence of light. During the first 4 weeks of light deprivation, we observed preservation of pigment content, chloroplast ultrastructure and a decrease in the rate of CO(2) assimilation. The signs of dark-induced senescence were observed only after the fourth week. This phase was characterized by decrease of pigment content, partial disintegration of chloroplast ultrastructure and by the development of photosystem II down regulation that includes the increases in non-photochemical fluorescence quenching, qN. In comparison with other plants like common bean and Arabidopsis, the processes of dark-induced senescence were very slow and the plants still can recover even after 6 months of light deprivation. We think these findings can open new opportunities for studying not only dark-induced senescence but also to investigate mechanisms determining tolerance to multiple stresses affecting integrity of photosynthetic apparatus.


Assuntos
Cloroplastos/ultraestrutura , Escuridão , Luz , Magnoliopsida/fisiologia , Fotossíntese/fisiologia , Estresse Fisiológico/fisiologia , Adaptação Fisiológica , Arabidopsis/fisiologia , Phaseolus/fisiologia , Fatores de Tempo
3.
J Photochem Photobiol B ; 96(1): 49-56, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19419884

RESUMO

Fluridone, an inhibitor of the carotenoid biosynthesis, was used to study the relationship between the degree of carotenoid depletion and the function of the photosynthetic apparatus. The data reveal that, at a small reduction of the carotenoid content (25% decrease of the total carotenoids), the PSII and PSI (oxidation of P700 by far-red light) photochemistry is not influenced, while the oxygen evolution is strongly inhibited. Further reduction of the total carotenoid content (more than 40%) leads to decrease of the chlorophyll content and inhibition of the functions of both photosystems as the effect on the photosynthetic oxygen evolution and primary photochemistry is stronger than the effect on P700 oxidation. The analysis of the oxygen production under continuous illumination and flash oxygen yields suggests that the inhibition of the oxygen evolution is caused mainly by the damage of PSIIalpha centers.


Assuntos
Carotenoides/biossíntese , Herbicidas/farmacologia , Fotossíntese/efeitos dos fármacos , Piridonas/farmacologia , Clorofila/química , Clorofila/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Oxirredução , Oxigênio/metabolismo , Pisum sativum/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência , Temperatura
4.
J Plant Physiol ; 165(18): 1954-63, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18586352

RESUMO

The comparative effects of decapitation and defoliation on the senescence-induced inactivation of photosynthetic activity in primary leaves of bean plants were investigated. Decapitation was performed during different phases of bean plant ontogenesis, immediately after the appearance of the 1st, 2nd, 3rd and 4th composite leaf. In addition, we examined a variant with primary leaves and stem with an apical bud, but without composite leaves, i.e. defoliated plants. Analyses of chlorophyll fluorescence, millisecond delayed fluorescence and absorption at 830nm in primary leaves were undertaken to investigate the alterations in photosystems II and I electron transport during the decapitation-induced delayed senescence in the non-detached leaves. Analysis of the OKJIP transients using the JIP-test (see [Strasser R, Srivastava A, Tsimilli-Michael M. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee, editors. Chlorophyll a fluorescence: a signature of photosynthesis. The Netherlands: Kluwer Academic Publishers, 2004; pp. 321-362]) showed an increase in several biophysical parameters of photosystem II in decapitated plants, specifically, the density of active reaction centers on a chlorophyll basis, the yields of trapping and electron transport, and the performance index. We also observed a decrease in the absorbed light energy per reaction center. Such a decrease in light absorption could be a result of the photosystem II down regulation that appeared as an increase in Q(B)-non-reducing photosystem II centers. The effect was identical when all leaves except the primary leaves were removed. The variant with a preserved apical bud, the defoliated plant, showed values similar to those of decapitated plants with primary leaves only. The changes in the induction curves of the delayed fluorescence also indicated an acceleration of electron transport beyond photosystem II in the decapitated and in defoliated plants. In these plants, the photosystem I-driven electron transport was accelerated, and the size of the plastoquinone pool was enhanced. It was established that decapitation can retard the senescence of primary leaves, can expand leaf life span and can cause activation of both photosystems I and II electron transport. The decapitation procedure shows similarities to the process of defoliation. The overcompensation effect that is developed after defoliation could initially be manifested as an acceleration of the linear photosynthetic electron flow in the rest of the leaves.


Assuntos
Phaseolus/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Absorção , Clorofila/metabolismo , Cloroplastos/ultraestrutura , Transporte de Elétrons , Fluorescência , Phaseolus/ultraestrutura , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/ultraestrutura , Fatores de Tempo
5.
Physiol Plant ; 133(2): 327-38, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18346081

RESUMO

Using the expression of fluorescence originated from the PSII open reaction center in the light by Oxborough and Baker (1997), we obtained a formula that expresses relationships between the quantum efficiency of PSII photochemistry in the dark (Phi(m)= F(v)/F(m)) and in the light Phi'(m)=F'(v)/F'(m):Phi'(m)=Phi(m)+L(NP), where L(NP)(=F(0)/F'(m)) denotes the quantum yield of light induced non-photochemical losses (heat dissipation and fluorescence de-excitation) in PSII. Using L(NP) and other conventional fluorescence parameters, we conducted quenching analyses with leaves of broad bean plants (Vicia faba L.) grown at 700 (high light; HL) and 80 mumol photons m(-2) s(-1) (low light; LL). We also examined whether behavior of q(0) quenching (q(0)=1-F'(0)/F(0)) is related to the reaction center quenching. When the actinic light (AL) was strong, Stern-Volmer quenching [NPQ=(F(m)-F'(m))/F'(m)] and L(NP) increased rapidly and then decreased slowly in HL leaves, while, in LL leaves, they increased slowly. It is probable that rapid formation of a large proton gradient was responsible for sharp rises in both parameters in HL leaves. The steady-state 'excess' parameter [Phi(Ex)= (1 - qP) Phi(m)/(Phi(m)+ L(NP))], fraction of energy migrating to closed PSII centers, increased with the photon flux density of AL in LL leaves. In contrast, in HL leaves, Phi(Ex) did not increase markedly. The examination of the relationship between Phi(Ex) and L(NP) obtained at various AL revealed that in LL leaves the increase in (1 - qP) with the increase in AL prevailed, while, in HL leaves, the increase in L(NP) suppressed the increase in (1 - qP). Using the difference between L(NP) and L(D) (Phi(ND)= L(NP)- L(D), where L(D)= F(0)/F(m)), q(0) and qN (=1-F'(v)/F(v)) were calculated without using measured F'(0). The relationships between q(0) and qN thus obtained for various AL levels were almost identical for both HL and LL leaves, implying no difference in the fluorescence origin between the HL and LL leaves. Usefulness of these equations expressing non-photochemical loss is discussed.


Assuntos
Luz , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Vicia faba/crescimento & desenvolvimento , Vicia faba/efeitos da radiação , Fluorescência , Fotoquímica , Fótons
6.
J Plant Physiol ; 164(9): 1124-33, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16716452

RESUMO

The photosynthetic changes evaluated by oxygen evolution, chlorophyll fluorescence, photoacoustics, and delayed fluorescence (DF) were studied in leaves of grown in vitro for 8 weeks grapevine plants (Vitis vinifera) infected by grapevine leafroll-associated virus 3 (GLRaV-3). The infected leaves were characterized during the viral infection without visible disease symptoms. The symptomless infection led to a decrease in plant biomass. The non-photochemical fluorescence quenching, qN, declined, whereas the photochemical quenching, qP, and the Chl a/b ratio were not significantly affected. Photoacoustic and oxygen evolution measurements showed that the energy storage and oxygen evolution rate decreased in the infected leaves. Enhanced alternative electron sinks during the symptomless viral infection were also estimated. The changes in fluorescence and DF temperature curves demonstrated an enhanced stability of the thylakoid membranes in the infected leaves. This effect was clearly expressed at high actinic light intensities. The viral infected in vitro grown grapevine plants were used in the present study as a simplified model system that allow to avoid the involvement of different environmental factors that could interfere with the GLRaV infection and the virus-grapevine interactions. Thus, the 'pure' impact of the viral infection on photosynthesis could be investigated.


Assuntos
Fotossíntese/fisiologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vírus de Plantas/fisiologia , Vitis/virologia , Clorofila/metabolismo , Fluorescência , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Temperatura
7.
Photosynth Res ; 85(2): 191-203, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16075320

RESUMO

The functional peculiarities and responses of the photosynthetic system in the flowering homoiochlorophyllous desiccation-tolerant (HDT) Haberlea rhodopensis and the non-desiccation-tolerant spinach were compared during desiccation and rehydration. Increasing rate of water loss clearly modifies the kinetic parameters of fluorescence induction, thermoluminescence emission, far-red induced P700 oxidation and oxygen evolution in the leaves of both species. The values of these parameters returned nearly to the control level after 24 h rehydration only of the leaves of HDT plant. PS II was converted in a non-functional state in desiccated spinach in accordance with the changes in membrane permeability, malondialdehyde, proline and H(2)O(2) contents. Moreover, our data showed a strong reduction of the total number of PS II centers in Haberlea without any changes in the energetics of the charge recombination. We consider this observation, together with the previously reported unusually high temperature of B-band (S(2)Q(B)-) emission of Haberlea to reflect some specific adaptive characteristics of the photosynthetic system. As far as we know this is the first time when such adaptive characteristics and mechanism of the photosynthetic system of a flowering HDT higher plant is described. These features of Haberlea can explain the fast recovery of its photosynthesis after desiccation, which enable this HDT plant to rapidly take advantage of frequent changes in water availability.


Assuntos
Dessecação , Magnoliopsida/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Spinacia oleracea/metabolismo , Água/metabolismo , Clorofila/metabolismo , Eletrólitos/metabolismo , Transporte de Elétrons , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Prolina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...