Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Genomics ; 21(4): 240-252, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33071618

RESUMO

Genomic and proteomic advances in extremophile microorganism studies are increasingly demonstrating their ability to produce a variety of enzymes capable of converting biomass into bioenergy. Such microorganisms are found in environments with nutritional restrictions, anaerobic environments, high salinity, varying pH conditions and extreme natural environments such as hydrothermal vents, soda lakes, and Antarctic sediments. As extremophile microorganisms and their enzymes are found in widely disparate locations, they generate new possibilities and opportunities to explore biotechnological prospecting, including biofuels (biogas, hydrogen and ethanol) with an aim toward using multi-omics tools that shed light on biotechnological breakthroughs.

2.
Bioprocess Biosyst Eng ; 43(12): 2117-2129, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32681451

RESUMO

Emerging contaminants (ECs) include endocrine-disrupting compounds, pharmaceuticals (lipid regulators, antibiotics, diuretics, non-steroid anti-inflammatory drugs, stimulant drugs, antiseptics, analgesic, beta blockers), detergents, disinfectants, and personal care products. The residues from these compounds have become a concerning because of their bioactive presence on environmental matrices, especially water bodies. The development of technologies, aiming the secure and efficient removal of these compounds from the environment or event to remove them before they achieve the environment, is necessary. In these context, the present review is about promising eco-friendly, low-cost and specially applied, including biological processes using microalgae, bacteria, enzymes produced by fungi, and adsorbent materials such as those recycled from other processes waste. The processes where revised considering the removal mechanism and the efficiency rate.


Assuntos
Biodegradação Ambiental , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Adsorção , Bactérias , Fungos , Microalgas , Purificação da Água/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-32411682

RESUMO

Renewable energy can assist the management of the effects of population growth and rapid economic development on the sustainability of animal husbandry. The primary aim of renewable energy is to minimize the use of fossil fuels via the creation of environmentally friendly energy products from depleted fossil fuels. Digesters that treat swine manure are extensively used in treatment systems; and inclusion of swine carcasses can increase the organic loading rate (OLR) thereby improving biogas yield and productivity on farms. However, the characteristics of the components including animal residues, proteins, lipids, remains of undigested feed items, antimicrobial drug residues, pathogenic microorganisms and nutrient contents, are complex and diverse. It is therefore necessary to manage the anaerobic process stability and digestate purification for subsequent use as fertilizer. Efficient methane recovery from residues rich in lipids is difficult because such residues are only slowly biodegradable. Pretreatment can promote solubilization of lipids and accelerate anaerobic digestion, and pretreatments can process the swine carcass before its introduction onto biodigesters. This review presents an overview of the anaerobic digestion of swine manure and carcasses. We analyze the characteristics of these residues, and we identify strategies to enhance biogas yield and process stability. We consider energy potential, co-digestion of swine manure and carcasses, physical, chemical, and biological pretreatment of biomass, sanitary aspects of swine manure and co-digestates and their recycling as fertilizers.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32117946

RESUMO

Technological processes mediated by microorganisms and enzymes are promising alternatives for treatment of recalcitrant residues. Keratinases hydrolyze keratin, the primary component of some wastes generated in many industrial activities. The present study was designed to evaluate strategies for obtaining keratinases produced by fungi using submerged fermentation and two residues as substrates, chicken feathers and swine hair. Two fungi isolated from feather residues showed potential for keratinase production, Fusarium oxysporum and Aspergillus sp. These were subjected to submerged fermentation using chicken feathers and swine hair prepared in three conditions (microbial concentration reduction, sterilization and hydrogen peroxide). The residual mass was quantified and tested for keratinase production. The most potent enzymatic extract was used in the precipitation technique with salts and organic solvents. The best results of enzymatic activity were obtained using F. oxysporum, on the 6thday of fermentation, obtaining 243.25 U mL-1 using sterilized swine hair as the substrate. Aspergillus sp. showed the highest keratinolytic activity on the 9thday, 113.50 U mL-1 using feathers as the substrate. The highest degradation percentage was 59.20% (w/w) in swine hair and the precipitation technique, with relative activities close to 50%. The results are promising for the application of residues and microorganisms in biotechnological processes of economic and environmental interest.

5.
Bioprocess Biosyst Eng ; 43(2): 261-272, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31578604

RESUMO

Enzymes are becoming tools in industrial processes because of several advantages, including activity in mild environmental conditions, and high specificity. Peroxidase, for one, stably oxidizes several substrates. The present study aimed to develop advanced oxidation processes (AOP), using non-commercial rice bran peroxidase to remove color and toxicity of synthetic textile wastewater. Using a microwave and shaker system, we obtained 38.9% and 100% of effluent color removal after peroxidase treatment, respectively. In addition, the shaker system decants residual dye particles through filtration, providing the textile industry with an economical and environmentally viable alternative to effluent treatment. In toxicity tests results, both treatment systems damaged the used genetic material. This damage occurs because of industrial discharge of wastewater into water bodies; effluent dilution reduced this damage. The data suggest that peroxidase as a textile effluent treatment has potential uses in industrial processes, because rice bran peroxidase has demonstrated affinity with dyes.


Assuntos
Corantes/química , Oryza/enzimologia , Peroxidase/química , Proteínas de Plantas/química , Têxteis , Purificação da Água , Oxirredução , Indústria Têxtil , Águas Residuárias/química
6.
Environ Sci Pollut Res Int ; 26(32): 33014-33022, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31512133

RESUMO

Swine production chain generates residues with potential application in environmental processes. This study aimed at the use of swine hair as a potential biofilter for hexavalent chromium (Cr(VI)) removal from wastewater of tannery industry. The hair was pretreated using H2O2 in alkaline medium, and statistical analysis was carried out to evaluate the hair degradation, as well the Cr(VI) removal by the potential pretreated biofilter. The results showed 99% of Cr(VI) removal in 105 min of treatment in large pH range (1-10). Treated and untreated effluents were submitted to cytotoxicity study using vegetable and animal cells, demonstrating a significant reduction on toxicity to both cells. Therefore, swine hair demonstrated to be a promising residue for heavy metal removal on the perspective of an environmentally friendly technique.


Assuntos
Cromo/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Animais , Peróxido de Hidrogênio/análise , Metais Pesados/análise , Suínos , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...