Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endod ; 46(12): 1913-1919, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32949559

RESUMO

INTRODUCTION: New tricalcium silicate cements have been shown to induce less coronal discoloration. The purpose of this in vitro study was to evaluate the degree of color change induced by various silicate materials in the presence and absence of blood. METHODS: One hundred human extracted anterior single-canal teeth were sectioned to standardized root lengths, accessed, and instrumented. Eight random experimental groups and 2 control groups were created wherein specimens were filled with experimental materials below the buccal cementoenamel junction as follows: EndoSequence RRM putty (Brasseler USA, Savannah, GA), EndoSequence RRM fast set putty (Brasseler USA), Biodentine (Septodont, Saint-Maur-des-Fossés, France), and white mineral trioxide aggregate (Dentsply Sirona, York, PA) either with the presence or absence of blood. Blood-only and saline-only samples were used for the positive and negative controls. After incubation in 100% humidity at 37°C, color changes were evaluated with a spectrophotometer (Ocean Optics, Dunedin, FL) on days 0, 30, 60, and 180 after material placement. Data were transformed into Commission International de I'Eclairage's L∗a∗b color values, and corresponding ΔE values were calculated. The 1-way analysis of variance test was performed for statistical analysis. RESULTS: Discoloration was observed in all specimens in the presence of blood. There was no statistical significance when comparing different materials in contact with blood. Intragroup observation at various time points, Biodentine, and EndoSequence RRM fast set putty showed significant difference between the presence and absence of blood at 180 days (P < .05). CONCLUSIONS: Contamination with blood of tricalcium silicate materials has the potential to cause coronal tooth discoloration.


Assuntos
Materiais Restauradores do Canal Radicular , Descoloração de Dente , Dente , Compostos de Alumínio , Compostos de Cálcio/efeitos adversos , Combinação de Medicamentos , França , Humanos , Óxidos , Materiais Restauradores do Canal Radicular/efeitos adversos , Silicatos/efeitos adversos , Descoloração de Dente/induzido quimicamente
2.
Sci Rep ; 7(1): 7567, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790409

RESUMO

The evolution of phenotypes occurs through changes both in protein sequence and gene expression levels. Though much of plant morphological evolution can be explained by changes in gene expression, examining its evolution has challenges. To gain a new perspective on organ evolution in plants, we applied a phylotranscriptomics approach. We combined a phylostratigraphic approach with gene expression based on the strand-specific RNA-seq data from seedling, floral bud, and root of 19 Arabidopsis thaliana accessions to examine the age and sequence divergence of transcriptomes from these organs and how they adapted over time. Our results indicate that, among the sense and antisense transcriptomes of these organs, the sense transcriptomes of seedlings are the evolutionarily oldest across all accessions and are the most conserved in amino acid sequence for most accessions. In contrast, among the sense transcriptomes from these same organs, those from floral bud are evolutionarily youngest and least conserved in sequence for most accessions. Different organs have adaptive peaks at different stages in their evolutionary history; however, all three show a common adaptive signal from the Magnoliophyta to Brassicale stage. Our research highlights how phylotranscriptomic analyses can be used to trace organ evolution in the deep history of plant species.


Assuntos
Arabidopsis/genética , Evolução Biológica , Flores/genética , Perfilação da Expressão Gênica , Raízes de Plantas/genética , Plântula/genética , Análise de Sequência de RNA
3.
Genome Biol ; 18(1): 75, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28464948

RESUMO

BACKGROUND: Ribosomal RNA (rRNA) accounts for the majority of the RNA in eukaryotic cells, and is encoded by hundreds to thousands of nearly identical gene copies, only a subset of which are active at any given time. In Arabidopsis thaliana, 45S rRNA genes are found in two large ribosomal DNA (rDNA) clusters and little is known about the contribution of each to the overall transcription pattern in the species. RESULTS: By taking advantage of genome sequencing data from the 1001 Genomes Consortium, we characterize rRNA gene sequence variation within and among accessions. Notably, variation is not restricted to the pre-rRNA sequences removed during processing, but it is also present within the highly conserved ribosomal subunits. Through linkage mapping we assign these variants to a particular rDNA cluster unambiguously and use them as reporters of rDNA cluster-specific expression. We demonstrate that rDNA cluster-usage varies greatly among accessions and that rDNA cluster-specific expression and silencing is controlled via genetic interactions between entire rDNA cluster haplotypes (alleles). CONCLUSIONS: We show that rRNA gene cluster expression is controlled via complex epistatic and allelic interactions between rDNA haplotypes that apparently regulate the entire rRNA gene cluster. Furthermore, the sequence polymorphism we discovered implies that the pool of rRNA in a cell may be heterogeneous, which could have functional consequences.


Assuntos
Arabidopsis/genética , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , RNA Ribossômico/genética , Alelos , Haplótipos
4.
Genetics ; 205(4): 1425-1441, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28179367

RESUMO

To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii, isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions.


Assuntos
Arabidopsis/genética , Variação Estrutural do Genoma , Característica Quantitativa Herdável , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Fenótipo , Imunidade Vegetal/genética , Locos de Características Quantitativas
5.
Plant Physiol ; 173(1): 155-166, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27920160

RESUMO

The EGG CELL1 (EC1) gene family of Arabidopsis (Arabidopsis thaliana) comprises five members that are specifically expressed in the egg cell and redundantly control gamete fusion during double fertilization. We investigated the activity of all five EC1 promoters in promoter-deletion studies and identified SUF4 (SUPPRESSOR OF FRIGIDA4), a C2H2 transcription factor, as a direct regulator of the EC1 gene expression. In particular, we demonstrated that SUF4 binds to all five Arabidopsis EC1 promoters, thus regulating their expression. The down-regulation of SUF4 in homozygous suf4-1 ovules results in reduced EC1 expression and delayed sperm fusion, which can be rescued by expressing SUF4-ß-glucuronidase under the control of the SUF4 promoter. To identify more gene products able to regulate EC1 expression together with SUF4, we performed coexpression studies that led to the identification of MOM1 (MORPHEUS' MOLECULE1), a component of a silencing mechanism that is independent of DNA methylation marks. In mom1-3 ovules, both SUF4 and EC1 genes are down-regulated, and EC1 genes show higher levels of histone 3 lysine-9 acetylation, suggesting that MOM1 contributes to the regulation of SUF4 and EC1 gene expression.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fertilização/genética , Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais/citologia , Células Germinativas Vegetais/metabolismo , Transativadores/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequência Conservada/genética , Genes de Plantas , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Motivos de Nucleotídeos/genética , Óvulo/citologia , Óvulo/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Transcrição Gênica
6.
Plant J ; 80(2): 242-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070081

RESUMO

In Arabidopsis thaliana, the HUA2 gene is required for proper expression of FLOWERING LOCUS C (FLC) and AGAMOUS, key regulators of flowering time and reproductive development, respectively. Although HUA2 is broadly expressed, plants lacking HUA2 function have only moderately reduced plant stature, leaf initiation rate and flowering time. To better understand HUA2 activity, and to test whether redundancy with similar genes underlies the absence of strong phenotypes in HUA2 mutant plants, we identified and subsequently characterized three additional HUA2-LIKE (HULK) genes in Arabidopsis. These genes form two clades (HUA2/HULK1 and HULK2/HULK3), with members broadly conserved in both vascular and non-vascular plants, but not present outside the plant kingdom. Plants with progressively reduced HULK activity had increasingly severe developmental defects, and plants homozygous for loss-of-function mutations in all four HULK genes were not recovered. Multiple mutants displayed reproductive, embryonic and post-embryonic abnormalities, and provide detailed insights into the overlapping and unique functions of individual HULK genes. With regard to flowering time, opposing influences were apparent: hua2 hulk1 plants were early-flowering, while hulk2 hulk3 mutants were late-flowering, and hua2 acted epistatically to cause early flowering in all combinations. Genome-wide expression profiling of mutant combinations using RNA-Seq revealed complex transcriptional changes in seedlings, with FLC, a known target of HUA2, among the most affected. Our studies, which include characterization of HULK expression patterns and subcellular localization, suggest that the HULK genes encode conserved nuclear factors with partially redundant but essential functions associated with diverse genetic pathways in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Família Multigênica , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Flores , Dados de Sequência Molecular
7.
Genom Data ; 2: 242-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26484101

RESUMO

Endosperm is a product of double fertilization, and provides nutrients and signals to the embryo during seed development in flowering plants. Early stages of endosperm development are critical for the development of its storage capacity through synthesis and accumulation of starch and storage proteins. Here we report on the isolation and sequencing of mRNAs from the central portion of the starchy endosperm of Zea mays (maize) B73 at 6 days after pollination. We detected a high level of correlation among the four biological replicates of RNAs isolated using laser-capture microdissection of the cell type. Because the assayed developmental stage precedes the synthesis and accumulation of the major storage proteins and starch in the endosperm, our dataset likely include mRNAs for genes that are involved in control and establishment of these storage programs. The mRNA-Seq data has been deposited in Gene Expression Omnibus (accession number GSE58504).

8.
Nat Genet ; 45(8): 891-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23817568

RESUMO

Despite the central importance of noncoding DNA to gene regulation and evolution, understanding of the extent of selection on plant noncoding DNA remains limited compared to that of other organisms. Here we report sequencing of genomes from three Brassicaceae species (Leavenworthia alabamica, Sisymbrium irio and Aethionema arabicum) and their joint analysis with six previously sequenced crucifer genomes. Conservation across orthologous bases suggests that at least 17% of the Arabidopsis thaliana genome is under selection, with nearly one-quarter of the sequence under selection lying outside of coding regions. Much of this sequence can be localized to approximately 90,000 conserved noncoding sequences (CNSs) that show evidence of transcriptional and post-transcriptional regulation. Population genomics analyses of two crucifer species, A. thaliana and Capsella grandiflora, confirm that most of the identified CNSs are evolving under medium to strong purifying selection. Overall, these CNSs highlight both similarities and several key differences between the regulatory DNA of plants and other species.


Assuntos
Brassicaceae/genética , Sequência Conservada , Sequências Reguladoras de Ácido Nucleico , Arabidopsis/genética , Brassicaceae/classificação , Análise por Conglomerados , Biologia Computacional , Evolução Molecular , Deleção de Genes , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Motivos de Nucleotídeos , Filogenia , Seleção Genética
9.
Nat Genet ; 45(7): 831-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23749190

RESUMO

The shift from outcrossing to selfing is common in flowering plants, but the genomic consequences and the speed at which they emerge remain poorly understood. An excellent model for understanding the evolution of self fertilization is provided by Capsella rubella, which became self compatible <200,000 years ago. We report a C. rubella reference genome sequence and compare RNA expression and polymorphism patterns between C. rubella and its outcrossing progenitor Capsella grandiflora. We found a clear shift in the expression of genes associated with flowering phenotypes, similar to that seen in Arabidopsis, in which self fertilization evolved about 1 million years ago. Comparisons of the two Capsella species showed evidence of rapid genome-wide relaxation of purifying selection in C. rubella without a concomitant change in transposable element abundance. Overall we document that the transition to selfing may be typified by parallel shifts in gene expression, along with a measurable reduction of purifying selection.


Assuntos
Capsella/genética , Evolução Molecular , Fertilização/genética , Genoma de Planta , Polinização/genética , Arabidopsis/genética , Fertilização/fisiologia , Genes de Plantas , Genoma de Planta/fisiologia , Dados de Sequência Molecular , Polinização/fisiologia , Autofertilização/genética , Análise de Sequência de DNA , Fatores de Tempo
10.
Nature ; 477(7365): 419-23, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21874022

RESUMO

Genetic differences between Arabidopsis thaliana accessions underlie the plant's extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions.


Assuntos
Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Transcrição Gênica/genética , Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Sequência de Bases , Genes de Plantas/genética , Genômica , Haplótipos/genética , Mutação INDEL/genética , Anotação de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Proteoma/genética , Plântula/genética , Análise de Sequência de DNA
11.
J Exp Bot ; 62(5): 1593-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21118822

RESUMO

Until recently, identification of gene regulatory networks controlling the development of the angiosperm female gametophyte has presented a significant challenge to the plant biology community. The angiosperm female gametophyte is fairly inaccessible because it is a highly reduced structure relative to the sporophyte and is embedded within multiple layers of the sporophytic tissue of the ovule. Moreover, although mutations affecting the female gametophyte can be readily isolated, their analysis can be difficult because most affect genes involved in basic cellular processes that are also required in the diploid sporophyte. In recent years, expression-based approaches in multiple species have begun to uncover gene sets expressed in specific female gametophyte cells as a means of identifying regulatory networks controlling cell differentiation in the female gametophyte. Here, recent efforts to identify and analyse gene expression programmes in the Arabidopsis female gametophyte are reviewed.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Óvulo Vegetal/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Magnoliopsida/genética
12.
Plant Physiol ; 148(1): 259-68, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18599653

RESUMO

The central cell of the female gametophyte plays a role in pollen tube guidance and in regulating the initiation of endosperm development. Following fertilization, the central cell gives rise to the seed's endosperm, which nourishes the developing embryo within the seed. The molecular mechanisms controlling specification and differentiation of the central cell are poorly understood. We identified AGL61 in a screen for transcription factor genes expressed in the female gametophyte. AGL61 encodes a Type I MADS domain protein, which likely functions as a transcription factor. Consistent with this, an AGL61-green fluorescent protein fusion protein is localized to the nucleus. In the context of the ovule and seed, AGL61 is expressed exclusively in the central cell and early endosperm. agl61 female gametophytes are affected in the central cell specifically. The morphological defects include an overall reduction in size of the central cell and a reduced or absent central cell vacuole. When fertilized with wild-type pollen, agl61 central cells fail to give rise to endosperm. In addition, synergid- and antipodal-expressed genes are ectopically expressed in agl61 central cells. The expression pattern and mutant phenotype of AGL61 are similar to those of AGL80, suggesting that AGL61 may function as a heterodimer with AGL80 within the central cell; consistent with this, AGL61 and AGL80 interact in yeast two-hybrid assays. Together, these data suggest that AGL61 functions as a transcription factor and controls the expression of downstream genes during central cell development.


Assuntos
Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/metabolismo , Expressão Gênica , Teste de Complementação Genética , Homeostase , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
13.
Plant Cell ; 20(3): 635-47, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18334668

RESUMO

Endosperm, a storage tissue in the angiosperm seed, provides nutrients to the embryo during seed development and/or to the developing seedling during germination. A major event in endosperm development is the transition between the syncytial phase, during which the endosperm nuclei undergo many rounds of mitosis without cytokinesis, and the cellularized phase, during which cell walls form around the endosperm nuclei. The molecular processes controlling this phase transition are not understood. In agl62 seeds, the endosperm cellularizes prematurely, indicating that AGL62 is required for suppression of cellularization during the syncytial phase. AGL62 encodes a Type I MADS domain protein that likely functions as a transcription factor. During seed development, AGL62 is expressed exclusively in the endosperm. During wild-type endosperm development, AGL62 expression is strong during the syncytial phase and then declines abruptly just before cellularization. By contrast, in mutant seeds containing defects in some FERTILIZATION-INDEPENDENT SEED (FIS) class Polycomb group genes, the endosperm fails to cellularize and AGL62 expression fails to decline. Together, these data suggest that AGL62 suppresses cellularization during the syncytial phase of endosperm development and that endosperm cellularization is triggered via direct or indirect AGL62 inactivation by the FIS polycomb complex.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Domínio MADS/fisiologia , Sementes/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Microscopia Confocal , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética , Sementes/metabolismo
14.
Plant J ; 51(2): 281-92, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17559508

RESUMO

The angiosperm female gametophyte typically consists of one egg cell, two synergid cells, one central cell, and three antipodal cells. Each of these four cell types has unique structural features and performs unique functions that are essential for the reproductive process. The gene regulatory networks conferring these four phenotypic states are largely uncharacterized. As a first step towards dissecting the gene regulatory networks of the female gametophyte, we have identified a large collection of genes expressed in specific cells of the Arabidopsis thaliana female gametophyte. We identified these genes using a differential expression screen based on reduced expression in determinant infertile1 (dif1) ovules, which lack female gametophytes. We hybridized ovule RNA probes with Affymetrix ATH1 genome arrays and validated the identified genes using real-time RT-PCR. These assays identified 71 genes exhibiting reduced expression in dif1 ovules. We further validated 45 of these genes using promoter::GFP fusions and 43 were expressed in the female gametophyte. In the context of the ovule, 11 genes were expressed exclusively in the antipodal cells, 11 genes were expressed exclusively or predominantly in the central cell, 17 genes were expressed exclusively or predominantly in the synergid cells, one gene was expressed exclusively in the egg cell, and three genes were expressed strongly in multiple cells of the female gametophyte. These genes provide insights into the molecular processes functioning in the female gametophyte and can be used as starting points to dissect the gene regulatory networks functioning during differentiation of the four female gametophyte cell types.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Regulação para Baixo , Reprodução , Sementes/genética , Sementes/metabolismo
15.
Plant Cell ; 18(8): 1862-72, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16798889

RESUMO

During plant reproduction, the central cell of the female gametophyte becomes fertilized to produce the endosperm, a storage tissue that nourishes the developing embryo within the seed. The molecular mechanisms controlling the specification and differentiation of the central cell are poorly understood. We identified a female gametophyte mutant in Arabidopsis thaliana, fem111, that is affected in central cell development. In fem111 female gametophytes, the central cell's nucleolus and vacuole fail to mature properly. In addition, endosperm development is not initiated after fertilization of fem111 female gametophytes. fem111 contains a T-DNA insertion in AGAMOUS-LIKE80 (AGL80). FEM111/AGL80 is a member of the MADS box family of genes that likely encode transcription factors. An AGL80-green fluorescent protein fusion protein is localized to the nucleus. Within the ovule and seed, FEM111/AGL80 is expressed exclusively in the central cell and uncellularized endosperm. FEM111/AGL80 expression is also detected in roots, leaves, floral stems, anthers, and young flowers by real-time RT-PCR. FEM111/AGL80 is required for the expression of two central cell-expressed genes, DEMETER and DD46, but not for a third central cell-expressed gene, FERTILIZATION-INDEPENDENT SEED2. Together, these data suggest that FEM111/AGL80 functions as a transcription factor within the central cell gene regulatory network and controls the expression of downstream genes required for central cell development and function.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/embriologia , Proteínas de Domínio MADS/fisiologia , Sementes/crescimento & desenvolvimento , Proteína AGAMOUS de Arabidopsis/genética , Proteína AGAMOUS de Arabidopsis/metabolismo , Proteína AGAMOUS de Arabidopsis/fisiologia , Arabidopsis/citologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/análise , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Mutação , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Óvulo/citologia , Óvulo/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Proteínas Recombinantes de Fusão/análise , Reprodução/genética , Reprodução/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/citologia , Sementes/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...