Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 81: 123-143, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072358

RESUMO

Nybomycin is an antibiotic compound with proven activity against multi-resistant Staphylococcus aureus, making it an interesting candidate for combating these globally threatening pathogens. For exploring its potential, sufficient amounts of nybomycin and its derivatives must be synthetized to fully study its effectiveness, safety profile, and clinical applications. As native isolates only accumulate low amounts of the compound, superior producers are needed. The heterologous cell factory S. albidoflavus 4N24, previously derived from the cluster-free chassis S. albidoflavus Del14, produced 860 µg L-1 of nybomycin, mainly in the stationary phase. A first round of strain development modulated expression of genes involved in supply of nybomycin precursors under control of the common Perm* promoter in 4N24, but without any effect. Subsequent studies with mCherry reporter strains revealed that Perm* failed to drive expression during the product synthesis phase but that use of two synthetic promoters (PkasOP* and P41) enabled strong constitutive expression during the entire process. Using PkasOP*, several rounds of metabolic engineering successively streamlined expression of genes involved in the pentose phosphate pathway, the shikimic acid pathway, supply of CoA esters, and nybomycin biosynthesis and export, which more than doubled the nybomycin titer to 1.7 mg L-1 in the sixth-generation strain NYB-6B. In addition, we identified the minimal set of nyb genes needed to synthetize the molecule using single-gene-deletion strains. Subsequently, deletion of the regulator nybW enabled nybomycin production to begin during the growth phase, further boosting the titer and productivity. Based on RNA sequencing along the created strain genealogy, we discovered that the nyb gene cluster was unfavorably downregulated in all advanced producers. This inspired removal of a part and the entire set of the four regulatory genes at the 3'-end nyb of the cluster. The corresponding mutants NYB-8 and NYB-9 exhibited marked further improvement in production, and the deregulated cluster was combined with all beneficial targets from primary metabolism. The best strain, S. albidoflavus NYB-11, accumulated up to 12 mg L-1 nybomycin, fifteenfold more than the basic strain. The absence of native gene clusters in the host and use of a lean minimal medium contributed to a selective production process, providing an important next step toward further development of nybomycin.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Streptomyces , Antibacterianos/farmacologia , Staphylococcus aureus/genética , Staphylococcus aureus Resistente à Meticilina/genética , Engenharia Metabólica , Metabolismo Secundário , Quinolonas
2.
Microb Cell Fact ; 20(1): 111, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082758

RESUMO

BACKGROUND: Pamamycins are macrodiolides of polyketide origin which form a family of differently large homologues with molecular weights between 579 and 663. They offer promising biological activity against pathogenic fungi and gram-positive bacteria. Admittedly, production titers are very low, and pamamycins are typically formed as crude mixture of mainly smaller derivatives, leaving larger derivatives rather unexplored so far. Therefore, strategies that enable a more efficient production of pamamycins and provide increased fractions of the rare large derivatives are highly desired. Here we took a systems biology approach, integrating transcription profiling by RNA sequencing and intracellular metabolite analysis, to enhance pamamycin production in the heterologous host S. albus J1074/R2. RESULTS: Supplemented with L-valine, the recombinant producer S. albus J1074/R2 achieved a threefold increased pamamycin titer of 3.5 mg L-1 and elevated fractions of larger derivatives: Pam 649 was strongly increased, and Pam 663 was newly formed. These beneficial effects were driven by increased availability of intracellular CoA thioesters, the building blocks for the polyketide, resulting from L-valine catabolism. Unfavorably, L-valine impaired growth of the strain, repressed genes of mannitol uptake and glycolysis, and suppressed pamamycin formation, despite the biosynthetic gene cluster was transcriptionally activated, restricting production to the post L-valine phase. A deletion mutant of the transcriptional regulator bkdR, controlling a branched-chain amino acid dehydrogenase complex, revealed decoupled pamamycin biosynthesis. The regulator mutant accumulated the polyketide independent of the nutrient status. Supplemented with L-valine, the novel strain enabled the biosynthesis of pamamycin mixtures with up to 55% of the heavy derivatives Pam 635, Pam 649, and Pam 663: almost 20-fold more than the wild type. CONCLUSIONS: Our findings open the door to provide rare heavy pamamycins at markedly increased efficiency and facilitate studies to assess their specific biological activities and explore this important polyketide further.


Assuntos
Macrolídeos/metabolismo , Policetídeos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Fatores de Transcrição/genética , Valina/metabolismo , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Proteínas de Bactérias/genética , Vias Biossintéticas , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Microbiologia Industrial , Metaboloma , Família Multigênica , Mutação
3.
Microb Cell Fact ; 18(1): 146, 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451111

RESUMO

BACKGROUND: Roseoflavin, a promising broad-spectrum antibiotic, is naturally produced by the bacteria Streptomyces davaonensis and Streptomyces cinnabarinus. The key enzymes responsible for roseoflavin biosynthesis and the corresponding genes were recently identified. In this study we aimed to enhance roseoflavin production in S. davaonensis and to synthesize roseoflavin in the heterologous hosts Bacillus subtilis and Corynebacterium glutamicum by (over)expression of the roseoflavin biosynthesis genes. RESULTS: While expression of the roseoflavin biosynthesis genes from S. davaonensis was not observed in recombinant strains of B. subtilis, overexpression was successful in C. glutamicum and S. davaonensis. Under the culture conditions tested, a maximum of 1.6 ± 0.2 µM (ca. 0.7 mg/l) and 34.9 ± 5.2 µM (ca. 14 mg/l) roseoflavin was produced with recombinant strains of C. glutamicum and S. davaonensis, respectively. In S. davaonensis the roseoflavin yield was increased by 78%. CONCLUSIONS: The results of this study provide a sound basis for the development of an economical roseoflavin production process.


Assuntos
Antibacterianos/biossíntese , Bacillus subtilis/metabolismo , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica/métodos , Riboflavina/análogos & derivados , Streptomyces/metabolismo , Bacillus subtilis/genética , Corynebacterium glutamicum/genética , Riboflavina/biossíntese , Riboflavina/genética , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...