Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38980142

RESUMO

X-ray free-electron laser (XFEL) light sources have enabled the rapid growth of time-resolved structural experiments, which provide crucial information on the function of macromolecules and their mechanisms. Here, the aim was to commission the SwissMX fixed-target sample-delivery system at the SwissFEL Cristallina experimental station using the PSI-developed micro-structured polymer (MISP) chip for pump-probe time-resolved experiments. To characterize the system, crystals of the light-sensitive protein light-oxygen-voltage domain 1 (LOV1) from Chlamydomonas reinhardtii were used. Using different experimental settings, the accidental illumination, referred to as light contamination, of crystals mounted in wells adjacent to those illuminated by the pump laser was examined. It was crucial to control the light scattering from and through the solid supports otherwise significant contamination occurred. However, the results here show that the opaque MISP chips are suitable for defined pump-probe studies of a light-sensitive protein. The experiment also probed the sub-millisecond structural dynamics of LOV1 and indicated that at Δt = 10 µs a covalent thioether bond is established between reactive Cys57 and its flavin mononucleotide cofactor. This experiment validates the crystals to be suitable for in-depth follow-up studies of this still poorly understood signal-transduction mechanism. Importantly, the fixed-target delivery system also permitted a tenfold reduction in protein sample consumption compared with the more common high-viscosity extrusion-based delivery system. This development creates the prospect of an increase in XFEL project throughput for the field.

2.
Acta Crystallogr D Struct Biol ; 78(Pt 3): 328-336, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234147

RESUMO

Over the last two decades, fragment-based drug discovery (FBDD) has emerged as an effective and efficient method to identify new chemical scaffolds for the development of lead compounds. X-ray crystallography can be used in FBDD as a tool to validate and develop fragments identified as binders by other methods. However, it is also often used with great success as a primary screening technique. In recent years, technological advances at macromolecular crystallography beamlines in terms of instrumentation, beam intensity and robotics have enabled the development of dedicated platforms at synchrotron sources for FBDD using X-ray crystallography. Here, the development of the Fast Fragment and Compound Screening (FFCS) platform, an integrated next-generation pipeline for crystal soaking, handling and data collection which allows crystallography-based screening of protein crystals against hundreds of fragments and compounds, at the Swiss Light Source is reported.


Assuntos
Proteínas , Síncrotrons , Cristalografia por Raios X , Descoberta de Drogas/métodos , Proteínas/química , Suíça
3.
Appl Environ Microbiol ; 87(21): e0121121, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34469197

RESUMO

Ruminants such as cattle and sheep depend on the breakdown of carbohydrates from plant-based feedstuff, which is accomplished by the microbial community in the rumen. Roughly 40% of the members of the rumen microbiota belong to the family Prevotellaceae, which ferments sugars to organic acids such as acetate, propionate, and succinate. These substrates are important nutrients for the ruminant. In a metaproteome analysis of the rumen of cattle, proteins that are homologous to the Na+-translocating NADH:quinone oxidoreductase (NQR) and the quinone:fumarate reductase (QFR) were identified in different Prevotella species. Here, we show that fumarate reduction to succinate in anaerobically growing Prevotella bryantii is coupled to chemiosmotic energy conservation by a supercomplex composed of NQR and QFR. This sodium-translocating NADH:fumarate oxidoreductase (SNFR) supercomplex was enriched by blue native PAGE (BN-PAGE) and characterized by in-gel enzyme activity staining and mass spectrometry. High NADH oxidation (850 nmol min-1 mg-1), quinone reduction (490 nmol min-1 mg-1), and fumarate reduction (1,200 nmol min-1 mg-1) activities, together with high expression levels, demonstrate that SNFR represents a charge-separating unit in P. bryantii. Absorption spectroscopy of SNFR exposed to different substrates revealed intramolecular electron transfer from the flavin adenine dinucleotide (FAD) cofactor in NQR to heme b cofactors in QFR. SNFR catalyzed the stoichiometric conversion of NADH and fumarate to NAD+ and succinate. We propose that the regeneration of NAD+ in P. bryantii is intimately linked to the buildup of an electrochemical gradient which powers ATP synthesis by electron transport phosphorylation. IMPORTANCE Feeding strategies for ruminants are designed to optimize nutrient efficiency for animals and to prevent energy losses like enhanced methane production. Key to this are the fermentative reactions of the rumen microbiota, dominated by Prevotella spp. We show that succinate formation by P. bryantii is coupled to NADH oxidation and sodium gradient formation by a newly described supercomplex consisting of Na+-translocating NADH:quinone oxidoreductase (NQR) and fumarate reductase (QFR), representing the sodium-translocating NADH:fumarate oxidoreductase (SNFR) supercomplex. SNFR is the major charge-separating module, generating an electrochemical sodium gradient in P. bryantii. Our findings offer clues to the observation that use of fumarate as feed additive does not significantly increase succinate production, or decrease methanogenesis, by the microbial community in the rumen.


Assuntos
Potenciais da Membrana , Prevotella/enzimologia , Sódio/metabolismo , Succinatos/metabolismo , Animais , Bovinos , Fumaratos/metabolismo , NAD , Ovinos , Succinato Desidrogenase
4.
Nat Commun ; 8(1): 1965, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213087

RESUMO

Metalloproteinase inhibitors often feature hydroxamate moieties to facilitate the chelation of metal ions in the catalytic center of target enzymes. Actinonin and matlystatins are  potent metalloproteinase inhibitors that comprise rare N-hydroxy-2-pentyl-succinamic acid warheads. Here we report the identification and characterization of their biosynthetic pathways. By gene cluster comparison and a combination of precursor feeding studies, heterologous pathway expression and gene deletion experiments we are able to show that the N-hydroxy-alkyl-succinamic acid warhead is generated by an unprecedented variation of the ethylmalonyl-CoA pathway. Moreover, we present evidence that the remarkable structural diversity of matlystatin congeners originates from the activity of a decarboxylase-dehydrogenase enzyme with high similarity to enzymes that form epoxyketones. We further exploit this mechanism to direct the biosynthesis of non-natural matlystatin derivatives. Our work paves the way for follow-up studies on these fascinating pathways and allows the identification of new protease inhibitors by genome mining.


Assuntos
Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/metabolismo , Metaloproteases/efeitos dos fármacos , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/antagonistas & inibidores , Acetilcisteína/química , Actinobacteria/genética , Actinobacteria/metabolismo , Acil Coenzima A , Vias Biossintéticas/genética , Carboxiliases , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Ácidos Hidroxâmicos/antagonistas & inibidores , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Família Multigênica , Ornitina/metabolismo , Oxirredutases , Propionatos/metabolismo , Inibidores de Proteases/farmacologia , Piridazinas/antagonistas & inibidores , Piridazinas/química , Piridazinas/metabolismo , Deleção de Sequência , Streptomyces/genética , Streptomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...