Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 11: 1516, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765523

RESUMO

It has long been appreciated that immunoglobulins are not just the effector endpoint of humoral immunity, but rather have a complex role in regulating antibody responses themselves. Donor derived anti-RhD IgG has been used for over 50 years as an immunoprophylactic to prevent maternal alloimmunization to RhD. Although anti-RhD has dramatically decreased rates of hemolytic disease of the fetus and newborn (for the RhD alloantigen), anti-RhD also fails in some cases, and can even paradoxically enhance immune responses in some circumstances. Attempts to generate a monoclonal anti-RhD have largely failed, with some monoclonals suppressing less than donor derived anti-RhD and others enhancing immunity. These difficulties likely result, in part, because the mechanism of anti-RhD remains unclear. However, substantial evidence exists to reject the common explanations of simple clearance of RhD + RBCs or masking of antigen. Donor derived anti-RhD is a mixture of 4 different IgG subtypes. To the best of our knowledge an analysis of the role different IgG subtypes play in immunoregulation has not been carried out; and, only IgG1 and IgG3 have been tested as monoclonals. Multiple attempts to elicit alloimmune responses to human RhD epitopes in mice have failed. To circumvent this limitation, we utilize a tractable animal model of RBC alloimmunization using the human Kell glycoprotein as an antigen to test the effect of IgG subtype on immunoregulation by antibodies to RBC alloantigens. We report that the ability of an anti-RBC IgG to enhance, suppress (at the level of IgM responses), or have no effect is a function of the IgG subclass in this model system.


Assuntos
Eritrócitos/imunologia , Imunidade Humoral , Imunoglobulina G/imunologia , Imunomodulação , Isoanticorpos/imunologia , Isoantígenos/imunologia , Receptores Fc/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Eritrócitos/metabolismo , Imunização Passiva , Camundongos , Camundongos Knockout
2.
MAbs ; 9(5): 767-773, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28463043

RESUMO

Human IgG is the main antibody class used in antibody therapies because of its efficacy and longer half-life, which are completely or partly due to FcγR-mediated functions of the molecules. Preclinical testing in mouse models are frequently performed using human IgG, but no detailed information on binding of human IgG to mouse FcγRs is available. The orthologous mouse and human FcγRs share roughly 60-70% identity, suggesting some incompatibility. Here, we report binding affinities of all mouse and human IgG subclasses to mouse FcγR. Human IgGs bound to mouse FcγR with remarkably similar binding strengths as we know from binding to human ortholog receptors, with relative affinities IgG3>IgG1>IgG4>IgG2 and FcγRI>>FcγRIV>FcγRIII>FcγRIIb. This suggests human IgG subclasses to have similar relative FcγR-mediated biological activities in mice.


Assuntos
Imunoglobulina G/química , Receptores de IgG/química , Ressonância de Plasmônio de Superfície , Animais , Humanos , Camundongos
4.
Transfusion ; 56(12): 2953-2962, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27632931

RESUMO

BACKGROUND: Human immunoglobulin G (IgG) includes four different subtypes (IgG1, IgG2, IgG3, and IgG4), and it is also now appreciated that there are genetic variations within IgG subtypes (called isoallotypes). Twenty-nine different isoallotypes have been described, with 7, 4, 15, and 3 isoallotypes described for IgG1, IgG2, IgG3, and IgG4, respectively. The reactivity of anti-IgG with different isoallotypes has not been characterized. STUDY DESIGN AND METHODS: A novel monoclonal anti-K antibody (PugetSound Monoclonal Antibody 1 [PUMA1]) was isolated and sequenced, and a panel of PUMA1 variants was expressed, consisting of the 29 known IgG isoallotypes. The resulting panel of antibodies was preincubated with K-positive red blood cells (RBCs) and then subjected to testing with currently approved anti-IgG by flow cytometry, solid phase systems, gel cards, and tube testing. RESULTS: A US Food and Drug Administration (FDA)-approved monoclonal anti-IgG (gamma-clone) failed to recognize 2 of 15 IgG3 isoallotypes (IgG3-03 and IgG3-13) and 3 of 3 IgG4 isoallotypes (IgG4-01, IgG4-02, and IgG4-03). In contrast, an FDA-approved rabbit polyclonal anti-IgG recognized each of the known human IgG isoallotypes. CONCLUSION: These findings demonstrate "blind spots" in isoalloantibody detection by a monoclonal anti-IgG. If a patient has anti-RBC antibodies predominantly of an IgG3 subtype (the IgG3-03 and/or IgG3-13 variety), then it is possible that a clinically significant alloantibody would be missed. IgG-03 and IgG-13 have an estimated frequency of 1% to 3% in Caucasian populations and 20% to 30% in certain African populations. Nonreactivity with IgG4 is a known characteristic of this monoclonal anti-IgG, but IgG4 isoallotypes have not been previously reported.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Anticorpos Monoclonais/imunologia , Alótipos de Imunoglobulina/imunologia , Imunoglobulina G/análise , Animais , Anticorpos Anti-Idiotípicos/imunologia , Erros de Diagnóstico , Variação Genética , Humanos , Imunoglobulina G/genética , Coelhos , Grupos Raciais
5.
Transfusion ; 56(9): 2314-21, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27338008

RESUMO

BACKGROUND: The RHCE allele is highly polymorphic; more than 60 variants have been described leading to diminished expression of C, c, E, and e antigens. Not much is known about the prevalence of RHCE variants in the Chinese population. Individuals carrying a variant are at risk to develop alloantibodies in response to mismatched pregnancy or transfusion. In this study, phenotyping and genotyping of the RHCE allele in Chinese donors revealed a new clinically relevant mutation. STUDY DESIGN AND METHODS: Blood samples from 200 D- and 200 D+ Chinese donors were analyzed by the RH multiplex ligation-dependent probe amplification (MLPA) assay and compared to serologically typed RhCE phenotypes, when available. All exons of the RHCE gene were sequenced in samples with aberrant genotyping results. The phenotype of the new variant RHCE allele was tested by transducing cultured human erythroblasts. RESULTS: Aberrant copy numbers for Exon 2 of the RHCE gene were discovered by MLPA in six D- donors (6/200), but not in D+ donors (0/200). Sequencing of the RHCE gene in these six donors identified a new variant RHCE*ce308C>T (p.103Pro>Leu) allele with an allele frequency of 0.015 within the D- individuals in this study. This variant was not detected in D+ individuals showing linkage with the D- haplotype. Serologically weak C expression and loss of c expression was demonstrated on donor red blood cells. In vitro transfection studies of the RHCE*ce308T variant in cDe/ce and CDe/CDe erythroblasts confirmed that the variant is associated with anti-C reactivity while abolishing c expression. CONCLUSION: Genotyping of individuals carrying this variant by standard RHCE genotyping might falsely predict a C- phenotype or a c+ phenotype. This new variant should be taken into account in RHCE genotyping assays designed for the Chinese population.


Assuntos
Alelos , Sistema do Grupo Sanguíneo Rh-Hr/genética , Povo Asiático/genética , Éxons/genética , Frequência do Gene/genética , Genótipo , Haplótipos/genética , Humanos , Reação em Cadeia da Polimerase Multiplex , Fenótipo
6.
Br J Haematol ; 173(3): 469-79, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27018217

RESUMO

To guide anti-D prophylaxis, Dutch D- pregnant women are offered a quantitative fetal-RHD-genotyping assay to determine the RHD status of their fetus. This allowed us to determine the frequency of different maternal RHD variants in 37 782 serologically D- pregnant women. A variant allele is present in at least 0·96% of Dutch D- pregnant women The D- serology could be confirmed after further serological testing in only 54% of these women, which emphasizes the potential relevance of genotyping of blood donors. 43 different RHD variant alleles were detected, including 15 novel alleles (11 null-, 2 partial D- and 2 DEL-alleles). Of those novel null alleles, one allele contained a single missense mutation (RHD*443C>G) and one allele had a single amino acid deletion (RHD*424_426del). The D- phenotype was confirmed by transduction of human D- erythroblasts, consolidating that, for the first time, a single amino acid change or deletion causes the D- phenotype. Transduction also confirmed the phenotypes for the two new variant DEL-alleles (RHD*721A>C and RHD*884T>C) and the novel partial RHD*492C>A allele. Notably, in three additional cases the DEL phenotype was observed but sequencing of the coding sequence, flanking introns and promoter region revealed an apparently wild-type RHD allele without mutations.


Assuntos
Frequência do Gene , Variação Genética , Sistema do Grupo Sanguíneo Rh-Hr/genética , Imunoglobulina rho(D)/genética , Alelos , Feminino , Doenças Fetais/diagnóstico , Doenças Fetais/genética , Genótipo , Humanos , Mutação , Países Baixos , Fenótipo , Gravidez
7.
Transfusion ; 55(6 Pt 2): 1457-66, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25647324

RESUMO

BACKGROUND: Serologic determination of the Vel- phenotype is challenging due to variable Vel expression levels. In this study we investigated the genetic basis for weak Vel expression levels and developed a high-throughput genotyping assay to detect Vel- donors. STUDY DESIGN AND METHODS: In 548 random Caucasian and 107 Vel+(w) donors genetic variation in the SMIM1 gene was studied and correlated to Vel expression levels. A total of 3366 Caucasian, 621 black, and 333 Chinese donors were screened with a high-throughput genotyping assay targeting the SMIM1*64_80del allele. RESULTS: The Vel+(w) phenotype is in most cases caused by the presence of one SMIM1 allele carrying the major allele of the rs1175550 SNP in combination with a SMIM1*64_80del allele or in few cases caused by the presence of the SMIM1*152T>A or SMIM1*152T>G allele. In approximately 6% of Vel+(w) donors genetic factors in SMIM1 could not explain the weak expression. We excluded the possibility that lack of expression of another blood group system was correlated with weak Vel expression levels. Furthermore, using a high-throughput Vel genotyping assay we detected two Caucasian Vel- donors. CONCLUSION: Weak Vel expression levels are caused by multiple genetic factors in SMIM1 and probably also by other genetic or environmental factors. Due to the variation in Vel expression levels, serologic determination of the Vel- phenotype is difficult and a genotyping assay targeting the c.64_80del deletion in SMIM1 should be used to screen donors for the Vel- phenotype.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Variação Genética , Proteínas de Membrana/genética , Alelos , Doadores de Sangue/estatística & dados numéricos , Genótipo , Células HEK293 , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Grupos Raciais/genética , Análise de Sequência de DNA , Deleção de Sequência , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...