Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 34(7): 3042-3052, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35431440

RESUMO

A series of nine soluble, symmetric chalcogenophenes bearing hexyl-substituted triphenylamines, indolocarbazoles, or phenylcarbazoles was designed and synthesized as potential two-photon absorption (2PA) initiators. A detailed photophysical analysis of these molecules revealed good 2PA properties of the series and, in particular, a strong influence of selenium on the 2PA cross sections, rendering these materials especially promising new 2PA photoinitiators. Structuring and threshold tests proved the efficiency and broad spectral versatility of two selenium-containing lead compounds as well as their applicability in an acrylate resin formulation. A comparison with commercial photoinitiators Irg369 and BAPO as well as sensitizer ITX showed that the newly designed selenium-based materials TPA-S and TPA-BBS outperform these traditional initiators by far both in terms of reactivity and dose. Moreover, by increasing the ultralow concentration of TPA-BBS, a further reduction of the polymerization threshold can be achieved, revealing the great potential of this series for application in two-photon polymerization (2PP) systems where only low laser power is available.

2.
Biofabrication ; 12(2): 025033, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32229710

RESUMO

How to pack materials into well-defined volumes efficiently has been a longstanding question of interest to physicists, material scientists, and mathematicians as these materials have broad applications ranging from shipping goods in commerce to seeds in agriculture and to spheroids in tissue engineering. How many marbles or gumball candies can you pack into a jar? Although these seem to be idle questions they have been studied for centuries and have recently become of greater interest with their broadening applications in science and medicine. Here, we study a similar problem where we try to pack cells into a spherical porous buckyball structure. The experimental limitations are short of the theoretical maximum packing density due to the microscale of the structures that the cells are being packed into. We show that we can pack more cells into a confined micro-structure (buckyball cage) by employing acoustofluidic activation and their hydrodynamic effect at the bottom of a liquid-carrier chamber compared to randomly dropping cells onto these buckyballs by gravity. Although, in essence, cells would be expected to achieve a higher maximum volume fraction than marbles in a jar, given that they can squeeze and reshape and reorient their structure, the packing density of cells into the spherical buckyball cages are far from this theoretical limit. This is mainly dictated by the experimental limitations of cells washing away as well as being loaded into the chamber.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas Analíticas Microfluídicas , Animais , Técnicas de Cultura de Células/instrumentação , Fibroblastos/citologia , Fibroblastos/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Neurônios/citologia , Neurônios/patologia , Som , Vibração
3.
Adv Healthc Mater ; 9(15): e1900752, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31347290

RESUMO

Two-photon polymerization (2PP) is a lithography-based 3D printing method allowing the fabrication of 3D structures with sub-micrometer resolution. This work focuses on the characterization of gelatin-norbornene (Gel-NB) bioinks which enables the embedding of cells via 2PP. The high reactivity of the thiol-ene system allows 2PP processing of cell-containing materials at remarkably high scanning speeds (1000 mm s-1 ) placing this technology in the domain of bioprinting. Atomic force microscopy results demonstrate that the indentation moduli of the produced hydrogel constructs can be adjusted in the 0.2-0.7 kPa range by controlling the 2PP processing parameters. Using this approach gradient 3D constructs are produced and the morphology of the embedded cells is observed in the course of 3 weeks. Furthermore, it is possible to tune the enzymatic degradation of the crosslinked bioink by varying the applied laser power. The 3D printed Gel-NB hydrogel constructs show exceptional biocompatibility, supported cell adhesion, and migration. Furthermore, cells maintain their proliferation capacity demonstrated by Ki-67 immunostaining. Moreover, the results demonstrate that direct embedding of cells provides uniform distribution and high cell loading independently of the pore size of the scaffold. The investigated photosensitive bioink enables high-definition bioprinting of well-defined constructs for long-term cell culture studies.


Assuntos
Bioimpressão , Gelatina , Lasers , Norbornanos , Impressão Tridimensional , Compostos de Sulfidrila , Engenharia Tecidual , Alicerces Teciduais
4.
Analyst ; 144(9): 3056-3063, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30916075

RESUMO

Photodynamic therapy (PDT) involves a photosensitizing agent activated with light to induce cell death. Two-photon excited PDT (TPE-PDT) offers numerous benefits compared to traditional one-photon induced PDT, including an increased penetration depth and precision. However, the in vitro profiling and comparison of two-photon photosensitizers (PS) are still troublesome. Herein, we report the development of an in vitro screening platform of TPE-PS using a 3D osteosarcoma cell culture. The platform was tested using three different two-photon (2P) active compounds - a 2P sensitizer P2CK, a fluorescent dye Eosin Y, and a porphyrin derivative (TPP). Their 2P absorption cross-sections (σ2PA) were characterised using a fully automated z-scan setup. TPP exhibited a remarkably high σ2PA at 720 nm (8865 GM) and P2CK presented a high absorption at 850 nm (405 GM), while Eosin Y had the lowest 2P absorption at the studied wavelengths (<100 GM). The cellular uptake of PS visualized using confocal laser scanning microscopy showed that both TPP and P2CK were internalized by the cells, while Eosin Y stayed mainly in the surrounding media. The efficiency of the former two TPE-PS was quantified using the PrestoBlue metabolic assay, showing a significant reduction in cell viability after two-photon irradiation. The possibility of damage localization was demonstrated using a co-culture of adipose derived stem cells together with osteosarcoma spheroids showing no signs of damage to the surrounding healthy cells after TPE-PDT.


Assuntos
Antineoplásicos/farmacologia , Compostos de Benzilideno/farmacologia , Amarelo de Eosina-(YS)/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Antineoplásicos/efeitos da radiação , Antineoplásicos/toxicidade , Compostos de Benzilideno/efeitos da radiação , Compostos de Benzilideno/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Amarelo de Eosina-(YS)/efeitos da radiação , Amarelo de Eosina-(YS)/toxicidade , Humanos , Células-Tronco Mesenquimais , Osteossarcoma/tratamento farmacológico , Fótons , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/toxicidade , Porfirinas/efeitos da radiação , Porfirinas/toxicidade
5.
Philos Trans A Math Phys Eng Sci ; 375(2097)2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28554975

RESUMO

The in situ cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESA's Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles. COSIMA is an in situ laboratory that operates remotely controlled next to the comet nucleus. The particles can be further manipulated within the instrument by mechanical and electrostatic means after their collection by impact. The particles are stored above 0°C in the instrument and the experiments are carried out on the refractory, ice-free matter of the captured cometary dust particles. An interesting particle morphology class, the compact particles, is not fragmented on impact. One of these particles was mechanically pressed and thereby crushed into large fragments. The particles are good electrical insulators and transform into rubble pile agglomerates by the application of an energetic indium ion beam during the secondary ion mass spectrometry analysis.This article is part of the themed issue 'Cometary science after Rosetta'.

6.
Nature ; 538(7623): 72-74, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27602514

RESUMO

The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula-the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov-Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites' parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...