Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 12(14): 3384-98, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20352675

RESUMO

The gas-phase structures of alkali-metal cation complexes of the amino acid methionine (Met) as well as protonated methionine are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser. Spectra of Li(+)(Met) and Na(+)(Met) are similar and relatively simple, whereas the spectra of K(+)(Met), Rb(+)(Met), and Cs(+)(Met) include distinctive new bands. Measured IRMPD spectra are compared to spectra calculated at the B3LYP/6-311+G(d,p) level of theory to identify the conformations present in the experimental studies. For Li(+) and Na(+) complexes, the only conformation present is a charge-solvated, tridentate structure that binds the metal cation to the amine and carbonyl groups of the amino acid backbone and the sulfur atom of the side chain, [N,CO,S]. In addition to the [N,CO,S] conformer, bands corresponding to alkali-metal cation binding to a bidentate zwitterionic structure, [CO(2)(-)], are clearly present for the K(+), Rb(+), and Cs(+) complexes. Theoretical calculations of the lowest energy conformations of Rb(+) and Cs(+) complexes suggest that the experimental spectra could also include contributions from two additional charge-solvated structures, tridentate [COOH,S] and bidentate [COOH]. For H(+)(Met), the IRMPD action spectrum is reproduced by multiple low-energy [N,CO,S] conformers, in which the protonated amine group hydrogen bonds to the carbonyl oxygen atom and the sulfur atom of the amino acid side chain. These [N,CO,S] conformers only differ in their side-chain orientations.


Assuntos
Álcalis/química , Metais/química , Metionina/química , Espectrofotometria Infravermelho/métodos , Cátions , Gases , Fótons
2.
J Phys Chem A ; 112(43): 10823-30, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18828579

RESUMO

The interaction of metal ions with aspartic (Asp) and glutamic (Glu) acid and the role of gas-phase acidity on zwitterionic stability were investigated using infrared photodissociation spectroscopy in the spectral range 950-1900 cm (-1) and by hybrid density functional theory. Lithium ions interact with both carbonyl oxygen atoms and the amine nitrogen for both amino acids, whereas cesium interacts with both of the oxygen atoms of the C-terminus and the carbonyl oxygen of the side chain for Asp. For Glu, this structure is competitive, but a structure in which the cesium ion interacts with just the carbonyl oxygen atoms is favored and the calculated spectrum for this structure is more consistent with the experimentally measured spectrum. In complexes with either of these metal ions, both amino acids are non-zwitterionic. In contrast, Glu*Ca (2+) and Glu*Ba (2+) both adopt structures in which Glu is zwitterionic and the metal ion interacts with both oxygens of the C-terminal carboxylate and the carbonyl oxygen in the side chain. Assignment of the zwitterionic form of Glu is strengthened by comparisons to the spectrum of the protonated form, which indicate spectral features associated with a protonated amino nitrogen. Comparisons with results for glutamine, which adopts nearly the same structures with these metal ions, indicate that the lower Delta H acid of Asp and Glu relative to other amino acids does not result in greater relative stability of the zwitterionic form, a result that is directly attributed to effects of the metal ions which disrupt the strong interaction between the carboxylic acid groups in the isolated, deprotonated forms of these amino acids.


Assuntos
Ácido Aspártico/química , Simulação por Computador , Ácido Glutâmico/química , Metais Alcalinos/química , Metais Alcalinoterrosos/química , Modelos Químicos , Íons/química , Espectrofotometria Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...