Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Stem Cell Reports ; 18(7): 1394-1404, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37390826

RESUMO

Functional vasculature is essential for delivering nutrients, oxygen, and cells to the heart and removing waste products. Here, we developed an in vitro vascularized human cardiac microtissue (MT) model based on human induced pluripotent stem cells (hiPSCs) in a microfluidic organ-on-chip by coculturing hiPSC-derived, pre-vascularized, cardiac MTs with vascular cells within a fibrin hydrogel. We showed that vascular networks spontaneously formed in and around these MTs and were lumenized and interconnected through anastomosis. Anastomosis was fluid flow dependent: continuous perfusion increased vessel density and thus enhanced the formation of the hybrid vessels. Vascularization further improved endothelial cell (EC)-cardiomyocyte communication via EC-derived paracrine factors, such as nitric oxide, and resulted in an enhanced inflammatory response. The platform sets the stage for studies on how organ-specific EC barriers respond to drugs or inflammatory stimuli.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Neovascularização Patológica , Células Endoteliais , Diferenciação Celular
3.
Curr Protoc ; 2(7): e462, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35789134

RESUMO

Sarcomeres are the structural units of the contractile apparatus in cardiac and skeletal muscle cells. Changes in sarcomere characteristics are indicative of changes in the sarcomeric proteins and function during development and disease. Assessment of sarcomere length, alignment, and organization provides insight into disease and drug responses in striated muscle cells and models, ranging from cardiomyocytes and skeletal muscle cells derived from human pluripotent stem cells to adult muscle cells isolated from animals or humans. However, quantification of sarcomere length is typically time consuming and prone to user-specific selection bias. Automated analysis pipelines exist but these often require either specialized software or programming experience. In addition, these pipelines are often designed for only one type of cell model in vitro. Here, we present an easy-to-implement protocol and software tool for automated sarcomere length and organization quantification in a variety of striated muscle in vitro models: Two dimensional (2D) cardiomyocytes, three dimensional (3D) cardiac microtissues, isolated adult cardiomyocytes, and 3D tissue engineered skeletal muscles. Based on an existing mathematical algorithm, this image analysis software (SotaTool) automatically detects the direction in which the sarcomere organization is highest over the entire image and outputs the length and organization of sarcomeres. We also analyzed videos of live cells during contraction, thereby allowing measurement of contraction parameters like fractional shortening, contraction time, relaxation time, and beating frequency. In this protocol, we give a step-by-step guide on how to prepare, image, and automatically quantify sarcomere and contraction characteristics in different types of in vitro models and we provide basic validation and discussion of the limitations of the software tool. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Staining and analyzing static hiPSC-CMs with SotaTool Alternate Protocol: Sample preparation, acquisition, and quantification of fractional shortening in live reporter hiPSC lines Support Protocol 1: Finding the image resolution Support Protocol 2: Advanced analysis settings Support Protocol 3: Finding sarcomere length in non-aligned cells.


Assuntos
Sarcômeros , Software , Animais , Técnicas de Cultura de Células , Músculo Esquelético , Miócitos Cardíacos , Sarcômeros/fisiologia
4.
Tissue Eng Part C Methods ; 27(2): 100-114, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33407000

RESUMO

In heart failure, cardiac fibrosis is the result of an adverse remodeling process. Collagen is continuously synthesized in the myocardium in an ongoing attempt of the heart to repair itself. The resulting collagen depositions act counterproductively, causing diastolic dysfunction and disturbing electrical conduction. Efforts to treat cardiac fibrosis specifically have not been successful and the molecular etiology is only partially understood. The differentiation of quiescent cardiac fibroblasts to extracellular matrix-depositing myofibroblasts is a hallmark of cardiac fibrosis and a key aspect of the adverse remodeling process. This conversion is induced by a complex interplay of biochemical signals and mechanical stimuli. Tissue-engineered 3D models to study cardiac fibroblast behavior in vitro indicate that cyclic strain can activate a myofibroblast phenotype. This raises the question how fibroblast quiescence is maintained in the healthy myocardium, despite continuous stimulation of ultimately profibrotic mechanotransductive pathways. In this review, we will discuss the convergence of biochemical and mechanical differentiation signals of myofibroblasts, and hypothesize how these affect this paradoxical quiescence. Impact statement Mechanotransduction pathways of cardiac fibroblasts seem to ultimately be profibrotic in nature, but in healthy human myocardium, cardiac fibroblasts remain quiescent, despite continuous mechanical stimulation. We propose three hypotheses that could explain this paradoxical state of affairs. Furthermore, we provide suggestions for future research, which should lead to a better understanding of fibroblast quiescence and activation, and ultimately to new strategies for the prevention and treatment of cardiac fibrosis and heart failure.


Assuntos
Mecanotransdução Celular , Miofibroblastos , Fibroblastos/patologia , Fibrose , Humanos , Miocárdio/patologia
5.
Stem Cell Reports ; 16(9): 2049-2057, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33338434

RESUMO

Human heart (patho)physiology is now widely studied using human pluripotent stem cells, but the immaturity of derivative cardiomyocytes has largely limited disease modeling to conditions associated with mutations in cardiac ion channel genes. Recent advances in tissue engineering and organoids have, however, created new opportunities to study diseases beyond "channelopathies." These synthetic cardiac structures allow quantitative measurement of contraction, force, and other biophysical parameters in three-dimensional configurations, in which the cardiomyocytes in addition become more mature. Multiple cardiac-relevant cell types are also often combined to form organized cardiac tissue mimetic constructs, where cell-cell, cell-extracellular matrix, and paracrine interactions can be mimicked. In this review, we provide an overview of some of the most promising technologies being implemented specifically in personalized heart-on-a-chip models and explore their applications, drawbacks, and potential for future development.


Assuntos
Coração/fisiologia , Miocárdio/metabolismo , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências , Técnicas de Cultura de Células , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Dispositivos Lab-On-A-Chip , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
6.
J Control Release ; 294: 247-258, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30572032

RESUMO

To date no disease-modifying drugs for osteoarthritis (OA) are available, with treatment limited to the use of pain killers and prosthetic replacement. The ADAMTS (A Disintegrin and Metallo Proteinase with Thrombospondin Motifs) enzyme family is thought to be instrumental in the loss of proteoglycans during cartilage degeneration in OA, and their inhibition was shown to reverse osteoarthritic cartilage degeneration. Locked Nucleic Acid (LNA)-modified antisense oligonucleotides (gapmers) released from biomaterial scaffolds for specific and prolonged ADAMTS inhibition in co-delivered and resident chondrocytes, is an attractive therapeutic strategy. Here, a gapmer sequence identified from a gapmer screen showed 90% ADAMTS5 silencing in a monolayer culture of human OA chondrocytes. Incorporation of the gapmer in a fibrin-hyaluronic acid hydrogel exhibited a sustained release profile up to 14 days. Gapmers loaded in hydrogels were able to transfect both co-embedded chondrocytes and chondrocytes in a neighboring gapmer-free hydrogel, as demonstrated by flow cytometry and confocal microscopy. Efficient knockdown of ADAMTS5 was shown up to 14 days in both cell populations, i.e. the gapmer-loaded and gapmer-free hydrogel. This work demonstrates the use applicability of a hydrogel as a platform for combined local delivery of chondrocytes and an ADAMTS-targeting gapmer for catabolic gene modulation in OA.


Assuntos
Proteína ADAMTS5/antagonistas & inibidores , Condrócitos , Fibrina/administração & dosagem , Hidrogéis/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , Osteoartrite/genética , Proteína ADAMTS5/genética , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Ácido Hialurônico/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...