Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 23(8): 1880-1904, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37602732

RESUMO

Species detection using eDNA is revolutionizing global capacity to monitor biodiversity. However, the lack of regional, vouchered, genomic sequence information-especially sequence information that includes intraspecific variation-creates a bottleneck for management agencies wanting to harness the complete power of eDNA to monitor taxa and implement eDNA analyses. eDNA studies depend upon regional databases of mitogenomic sequence information to evaluate the effectiveness of such data to detect and identify taxa. We created the Oregon Biodiversity Genome Project to create a database of complete, nearly error-free mitogenomic sequences for all of Oregon's fishes. We have successfully assembled the complete mitogenomes of 313 specimens of freshwater, anadromous and estuarine fishes representing 24 families, 55 genera and 129 species and lineages. Comparative analyses of these sequences illustrate that many regions of the mitogenome are taxonomically informative, that the short (~150 bp) mitochondrial 'barcode' regions typically used for eDNA assays do not consistently diagnose for species and that complete single or multiple genes of the mitogenome are preferable for identifying Oregon's fishes. This project provides a blueprint for other researchers to follow as they build regional databases, illustrates the taxonomic value and limits of complete mitogenomic sequences and offers clues as to how current eDNA assays and environmental genomics methods of the future can best leverage this information.


Assuntos
DNA Ambiental , Humanos , Animais , Biodiversidade , Genômica/métodos , Peixes/genética , Genoma , Código de Barras de DNA Taxonômico , Monitoramento Ambiental/métodos
2.
Microorganisms ; 10(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35630377

RESUMO

The gut microbiome may represent a relatively untapped resource in the effort to manage and conserve threatened or endangered fish populations, including wild and hatchery-reared Pacific salmonids. To clarify this potential, we defined how steelhead trout gut microbiome composition varies across watersheds and as a function of ancestry. First, we measured this variation across watersheds using wild steelhead trout sampled from nine locations spanning three river basins. While gut microbial composition differs across basins, there exist bacterial clades that are ubiquitous across all populations. Correlating the phylogenetic composition of clades with geographic distance reveals 395 clades of bacteria whose ecological distribution implicates their co-diversification with steelheads. Second, we quantified how microbiome composition varies between first generation hatchery-reared steelhead and traditional hatchery-reared steelhead. Despite being subject to the same hatchery management strategies, fish bred from wild parents carry distinct microbiomes from those bred from hatchery broodstock, implicating the role of genotype on microbiome composition. Finally, we integrated all data from both studies to reveal two distinct, yet robust clusters of community composition. Collectively, our study documents for the first time how the steelhead gut microbiome varies by geography or broodstock and uncovers microbial taxa that may indicate the watershed or hatchery from which an individual was sourced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...