Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev E ; 108(3-2): 035002, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849112

RESUMO

Thin sheets respond to confinement by smoothly wrinkling or by focusing stress into small, sharp regions. From engineering to biology, geology, textiles, and art, thin sheets are packed and confined in a wide variety of ways, and yet fundamental questions remain about how stresses focus and patterns form in these structures. Using experiments and molecular dynamics simulations, we probe the confinement response of circular sheets, flattened in their central region and quasistatically drawn through a ring. Wrinkles develop in the outer, free region, then are replaced by a truncated cone, which forms in an abrupt transition to stress focusing. We explore how the force associated with this event, and the number of wrinkles, depend on geometry. Additional cones sequentially pattern the sheet until axisymmetry is recovered in most geometries. The cone size is sensitive to in-plane geometry. We uncover a coarse-grained description of this geometric dependence, which diverges depending on the proximity to the asymptotic d-cone limit, where the clamp size approaches zero. This paper contributes to the characterization of general confinement of thin sheets, while broadening the understanding of the d cone, a fundamental element of stress focusing, as it appears in realistic settings.

2.
Eur Phys J E Soft Matter ; 45(1): 3, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35024982

RESUMO

In bistable actuators and other engineered devices, a homogeneous stimulus (e.g., mechanical, chemical, thermal, or magnetic) is often applied to an entire shell to initiate a snap-through instability. In this work, we demonstrate that restricting the active area to the shell boundary allows for a large reduction in its size, thereby decreasing the energy input required to actuate the shell. To do so, we combine theory with 1D finite element simulations of spherical caps with a non-homogeneous distribution of stimulus-responsive material. We rely on the effective curvature stimulus, i.e., the natural curvature induced by the non-mechanical stimulus, which ensures that our results are entirely stimulus-agnostic. To validate our numerics and demonstrate this generality, we also perform two sets of experiments, wherein we use residual swelling of bilayer silicone elastomers-a process that mimics differential growth-as well as a magneto-elastomer to induce curvatures that cause snap-through. Our results elucidate the underlying mechanics, offering an intuitive route to optimal design for efficient snap-through.


Assuntos
Elastômeros
3.
Soft Matter ; 15(6): 1215-1222, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30539965

RESUMO

We study the periodic buckling patterns that emerge when elastic shells are subjected to geometric confinement. Residual swelling provides access to range of shapes (saddles, rolled sheets, cylinders, and spherical sections) which vary in their extrinsic and intrinsic curvatures. Our experimental and numerical data show that when these moderately thick structures are radially confined, a single geometric parameter - the ratio of the total shell radius to the amount of unconstrained material - predicts the number of lobes formed. We present a model that interprets this scaling as the competition between radial and circumferential bending. Next, we show that reducing the transverse confinement of saddles causes the lobe number to decrease with a similar scaling analysis. Hence, one geometric parameter captures the wave number through a wide range of radial and transverse confinement, connecting the shell shape to the shape of the boundary that confines it. We expect these results to be relevant for an expanse of shell shapes, and thus applicable to the design of shape-shifting materials and the swelling and growth of soft structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...