Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(31): e202300504, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36929100

RESUMO

Owing to the strong electron-donating ability of ylide substituents, diylidyltetrylenes are usually highly nucleophilic species with strong donor capacities. Here, we demonstrate that their electronic properties are in fact highly flexible and can be effectively tuned through variation of the substituent in the ylide backbone. Initial density functional theory studies showed that cyano groups are particularly capable in lowering the LUMO energy of diylidyl germylenes thus turning these usually highly nucleophilic species into electrophilic compounds. This was confirmed by experimental studies. Attempts to synthesize the germylene (YCN )2 Ge [with YCN =Ph3 P-(C)-CN] from the corresponding metalated ylide YCN K selectively led to germanide [(YCN )3 Ge)K]2 thus reflecting the electrophilic nature of the intermediate formed germylene. XRD analysis of single crystals of (YCN )2 Ge - serendipitously obtained through protonative cleavage of one ylide from the germanide - revealed a monomeric structure with rather long Ge-ylide linkages, which corroborates well with a pure single bond and no stabilization of the empty pπ orbital at germanium through π bonding. The germanide exhibits methanide-like reactivity towards chalcogens but a likewise weak Ge-C bond as demonstrated by the insertion of carbon dioxide.

2.
Chemistry ; 29(24): e202203863, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36772849

RESUMO

The synthesis and structure analysis of a series of mono and diylide-substituted tetrylenes of type YEX and Y2 E (E=Ge, Sn, Pb; X=Cl or Br) using a thiophosphinoyl-tethered metallated ylide (Y=Ph2 P(S)-C-P(pip)Ph2 with pip=piperidyl) is reported, amongst the first ylide-substituted plumbylenes. The tetrylenes feature distinct trends in the spectroscopic and structural properties of the ylide ligand with increasing atomic number of the tetrel element. For instance, an increasingly high-field shifted signal for the thiophosphinoyl group is observed in the 31 P{1 H} NMR spectrum as a consequence of the increasing polarity of the element-carbon bond, which likewise results in a shortening of the ylidic C-P bond in the solid-state structure. The diylidyltetrylenes are unstable towards transylidation forming the mono(ylide)tetrylenes when treated with the tetrel dihalides according to the stability trend: Y2 Pb

3.
Chemistry ; 28(8): e202104074, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34890085

RESUMO

Although N-heterocyclic phosphenium (NHP) cations have received considerable research interest due to their application in organocatalysis, including asymmetric synthesis, phosphenium cations with other substitution patterns have hardly been explored. Herein, the preparation of a series of ylide-substituted cations of type [YPR]+ (with Y=Ph3 PC(Ph), R=Ph, Cy or Y) and their structural and coordination properties are reported. Although the diylide-substituted cation forms spontaneous from the chlorophosphine precursor, the monoylidylphosphenium ions required the addition of a halide-abstraction reagent. The molecular structures of the cations reflected the different degrees of electron donation from the ylide to the phosphorus center depending on the second substituent. Molecular orbital analysis confirmed the stronger donor properties of the ylide systems compared to NHPs with the mono-ylide substituted cations featuring a more pronounced electrophilicity. This was mirrored by the reaction of the cations towards gold chloride, in which only the diylide-substituted cation [Y2 P]+ formed the expected LAuCl]+ complex, while the monoylide-substituted compounds reacted to the chlorophosphine ligands by transfer of the chloride from gold to the phosphorus center. These results demonstrate the tunability of ylide-functionalized phosphorus cations, which should allow for further applications in coordination chemistry in the future.

4.
Chem Sci ; 12(12): 4329-4337, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34168748

RESUMO

The implementation of gold catalysis into large-scale processes suffers from the fact that most reactions still require high catalyst loadings to achieve efficient catalysis thus making upscaling impractical. Here, we report systematic studies on the impact of the substituent in the backbone of ylide-substituted phosphines (YPhos) on the catalytic activity in the hydroamination of alkynes, which allowed us to increase the catalyst performance by orders of magnitude. While electronic changes of the ligand properties by introduction of aryl groups with electron-withdrawing or electron-donating groups had surprisingly little impact on the activity of the gold complexes, the use of bulky aryl groups with ortho-substituents led to a remarkable boost in the catalyst activity. However, this catalyst improvement is not a result of an increased steric demand of the ligand towards the metal center, but due to steric protection of the reactive ylidic carbon centre in the ligand backbone. The gold complex of the thus designed mesityl-substituted YPhos ligand YMesPCy2, which is readily accessible in one step from a simple phosphonium salt, exhibited a high catalyst stability and allowed for turnover numbers up to 20 000 in the hydroamination of a series of different alkynes and amines. Furthermore, the catalyst was also active in more challenging reactions including enyne cyclisation and the formation of 1,2-dihydroquinolines.

5.
Eur J Inorg Chem ; 2021(47): 5004-5013, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35874088

RESUMO

Due to their transition metal-like behavior divalent group 14 compounds bear huge potential for their application in bond activation reactions and catalysis. Here we report on detailed computational studies on the use of ylide-substituted tetrylenes in the activation of dihydrogen and phenol. A series of acyclic and cyclic ylidyltetrylenes featuring various α-substituents with different σ- and π-donating capabilities have been investigated which demonstrate that particularly π-accepting boryl groups lead to beneficial properties and low barriers for single-site activation reactions, above all in the case of silylenes. In contrast, for the thermodynamically more stable germylenes and stannylenes an alternative mechanism involving the active participation of the ylide ligand in the E-H bond (E=H or PhO) activation process by addition across the element carbon linkage was found to be energetically favored. Furthermore, the boryl substituted tetrylenes allowed for a further activation pathway involving the active participation of the boron element bond. These cooperative mechanisms are especially attractive for the heavier cyclic ylidyltetrylenes in which the loss of the protonated ylide group is prevented due to the cyclic framework. Overall, the present studies suggest that cyclic ylide-substituted germylenes and stannylenes bear huge potential for cooperative bond activations at mild conditions which should be experimentally addressed in the future.

6.
Chemistry ; 26(66): 15145-15149, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32954596

RESUMO

Dinuclear low-valent compounds of the heavy main group elements are rare species owing to their intrinsic reactivity. However, they represent desirable target molecules due to their unusual bonding situations as well as applications in bond activations and materials synthesis. The isolation of such compounds usually requires the use of substituents that provide sufficient stability and synthetic access. Herein, we report on the use of strongly donating ylide-substituents to access low-valent dinuclear group 14 compounds. The ylides not only impart steric and electronic stabilization, but also allow facile synthesis via transfer of an ylide from tetrylene precursors of type R Y2 E to ECl2 (E=Ge, Sn; R Y=TolSO2 (PR3 )C with R=Ph, Cy). This method allowed the isolation of dinuclear complexes amongst a germanium analogue of a vinyl cation, [(Ph Y)2 GeGe(Ph Y)]+ with an electronic structure best described as a germylene-stabilized GeII cation and a ylide(chloro)digermene [Cy Y(Cl)GeGe(Cl)Cy Y] with an unusually unsymmetrical structure.

7.
Angew Chem Int Ed Engl ; 59(46): 20596-20603, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-32725943

RESUMO

Organolithium compounds are amongst the most important organometallic reagents and frequently used in difficult metallation reactions. However, their direct use in the formation of C-C bonds is less established. Although remarkable advances in the coupling of aryllithium compounds have been achieved, Csp2 -Csp3 coupling reactions are very limited. Herein, we report the first general protocol for the coupling or aryl chlorides with alkyllithium reagents. Palladium catalysts based on ylide-substituted phosphines (YPhos) were found to be excellently suited for this transformation giving high selectivities at room temperature with a variety of aryl chlorides without the need for an additional transmetallation reagent. This is demonstrated in gram-scale synthesis including building blocks for materials chemistry and pharmaceutical industry. Furthermore, the direct coupling of aryllithiums as well as Grignard reagents with aryl chlorides was also easily accomplished at room temperature.

8.
Chem Commun (Camb) ; 56(58): 8051-8054, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32539059

RESUMO

The isolation, structural characterization and coordination chemistry of a di(amino)-substituted carbodiphosphorane (CDP) are reported. Compared to the analogue, dianionic bis(iminophosphoryl)methandiides, the CDP is a stronger C-, but much weaker N-donor which led to the isolation of solely C-coordinated metal complexes amongst an unusual monomeric trigonal-planar L·ZnCl2 complex.

9.
Molecules ; 25(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059503

RESUMO

Cyclic amino(ylide)carbenes (CAYCs) are the ylide-substituted analogues of N-heterocyclic Carbenes (NHCs). Due to the stronger π donation of the ylide compared to an amino moiety they are stronger donors and thus are desirable ligands for catalysis. However, no stable CAYC has been reported until today. Here, we describe experimental and computational studies on the synthesis and stability of CAYCs based on pyrroles with trialkyl onium groups. Attempts to isolate two CAYCs with trialkyl phosphonium and sulfonium ylides resulted in the deprotonation of the alkyl groups instead of the formation of the desired CAYCs. In case of the PCy3-substituted system, the corresponding ylide was isolated, while deprotonation of the SMe2-functionalized compound led to the formation of ethene and the thioether. Detailed computational studies on various trialkyl onium groups showed that both the α- and ß-deprotonated compounds were energetically favored over the free carbene. The most stable candidates were revealed to be α-hydrogen-free adamantyl-substituted onium groups, for which ß-deprotonation is less favorable at the bridgehead position. Overall, the calculations showed that the isolation of CAYCs should be possible, but careful design is required to exclude decomposition pathways such as deprotonations at the onium group.


Assuntos
Hidrogênio/química , Metano/análogos & derivados , Estrutura Molecular , Catálise , Metano/síntese química , Metano/química , Estereoisomerismo , Sulfetos/química
10.
Organometallics ; 39(23): 4312-4319, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33551536

RESUMO

The use of the bis(1-piperidinyl)-substituted carbodiphosphorane (Ph2(Pip)P)2C (1) as an NCN ligand for the stabilization of phosphorus cations was studied. A simple ligand for halide exchange allowed the synthesis and isolation of a series of phosphorus monocations of the type [1-PR2]+ (with R = Cl, Br, I, CyCl, Ph). These cations exhibit characteristic NMR and structural properties which nicely correlate with the charge at the central phosphorus atom and the interaction between the ligand and the PR2 moiety. Halide abstraction from the monocations does not result in isolable dicationic compounds but in an unexpected intramolecular Csp3 -H activation in the piperidinyl group. DFT studies show that the selective activation of the CH2 group next to the nitrogen atom instead of a CH group at the phenyl substituents proceeds via an iminium intermediate formed by hydride transfer from the carbon atom to the cationic phosphorus center. This observation clearly demonstrates the pronounced π acidity of the dicationic phosphorus species in comparison to compounds with a further π-donor substituent.

11.
Dalton Trans ; 48(6): 1936-1940, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30574977

RESUMO

The c-phosphanylimine L1 was employed for the synthesis of the novel titanaaziridine 1 with an intramolecular phosphine donor side following a reductive complexation route. This coordination mode is new for c-phosphanylimines and compound 1 is the first group 4 complex featuring a c-phosphanylimine ligand.

12.
Org Biomol Chem ; 16(37): 8292-8304, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30221304

RESUMO

The first trapping of N-acyliminium ions by in situ generated carbaminic acid (product of carbon dioxide (CO2) and amine) is reported. This catalyst-free reaction provides a convenient and feasible approach to prepare N-acyl thia- and oxazolidinyl carbamates with good functional-group compatibility and high efficiency under green conditions. Furthermore, the multicomponent method features a broad substrate scope, facile product diversification, smooth scale-up and notable potential for polymer applications.

13.
Chemistry ; 24(4): 848-854, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28925514

RESUMO

An unusual germole-to-silole transformation is described. As key intermediates hetero-fulvenes are formed which rearrange to more stable bicyclic carbene analogues. The so-formed germylenes undergo a reductive elimination yielding elemental germanium and siloles. In contrast, the analogous silylenes are stable at ambient conditions and were identified by MS spectrometry and NMR spectroscopy supported by the results of quantum mechanical calculations. These bicyclic silylenes are stable derivatives of the global minimum of the C4 Si2 H6 potential energy surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...